Technical Specifications For:

CENTRAL KITCHEN IMPROVEMENTS

Lakeside Union School District

Client: Lakeside Union School District 12335 Woodside Avenue Lakeside, CA 92040 Architect:
AlphaStudio Design Group
6152 Innovation Way
Carlsbad, CA 92009
760-431-2444

TABLE OF CONTENTS

DIVISION 01 - GENERAL REQUIREMENTS

01 1000	SUMMARY
01 1141	PROJECT COORDINATION
01 2000	PRICE AND PAYMENT PROCEDURES
01 3000	ADMINISTRATIVE REQUIREMENTS
01 3010	SUBMITTALS
01 3216	CONSTRUCTION PROGRESS SCHEDULE
01 4000	QUALITY REQUIREMENTS
01 5000	TEMPORARY FACILITIES AND CONTROLS
01 6000	PRODUCT REQUIREMENTS
01 7000	EXECUTION AND CLOSEOUT REQUIREMENTS
01 7410	CLEANING
01 7700	PROJECT CLOSEOUT
01 7800	CLOSEOUT SUBMITTALS
01 9010	TESTING AND INSPECTION REQUIREMENTS

DIVISION 02 - EXISTING CONDITIONS

02 4100 DEMOLITION

DIVISION 03 - CONCRETE

03 3000	CAST-IN-PLACE CONCRETE
03 3511	CONCRETE FLOOR FINISHES

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

06 1000 ROUGH CARPENTRY

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

07 5217	STYRENE-BUTADINE-STYRENE MODIFIED BITUMINOUS ROOFING
07 6200	SHEET METAL FLASHING AND TRIM
07 9200	JOINT SEALANTS

DIVISION 08 - OPENINGS

08 5113 ALUMINUM WINDOWS

DIVISION 09 - FINISHES

09 2116	GYPSUM BOARD ASSEMBLIES
09 5100	SUSPENDED ACOUSTICAL CEILINGS
na annn	PAINTING AND COATING

DIVISION 10 - SPECIALTIES

10 2601 WALL AND CORNER GUARDS

DIVISION 22 - PLUMBING

22 0517	SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
22 0518	ESCUTCHEONS FOR PLUMBING PIPING
22 0523.12	BALL VALVES FOR PLUMBING PIPING
22 0529	HANGERS AND SUPPORTS FOR PLUMBING PIPING & EQUIPMENT
22 0553	IDENTIFICATION
22 0719	PLUMBING PIPING INSULATION
22 1116	DOMESTIC WATER PIPING
22 1316	SANITARY WASTE & VENT PIPING
22 1323	SANITARY WASTE INTERCEPTORS
22 3300	ELECTRIC, DOMESTIC WATER HEATERS

DIVISION 23 – HEATING, VENTILATING, AND AIR CONDITIONING

EXISTING HVAC AIR DISTRIBUTION SYSTEM CLEANING
COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
HANGERS AND SUPPORTS FOR HVAC PIPING & EQUIPMENT
VIBRATION CONTROLS FOR HVAC
IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
TESTING, ADJUSTING AND BALANCING FOR HVAC
DUCT INSULATION
HVAC EQUIPMENT INSULATION
HVAC PIPING INSULATION
FACILITY NATURAL GAS PIPING
METAL DUCTS
AIR DUCT ACCESSORIES
FLEXIBLE DUCTS
HVAC POWER VENTILATORS
LISTED KITCHEN VENTILATION SYSTEM EXHAUST DUCTS
AIR DIFFUSERS, REGISTERS, AND GRILLES
HVAC GRAVITY VENTILATORS
GAS FIRED DUCT HEATERS
SPLIT SYSTEM AIR CONDITIONERS

DIVISION 26 – ELECTRICAL

26 0100	GENERAL PROVISIONS
26 0519	POWER CONDUCTORS
26 0526	GROUNDING
26 0533	CONDUIT & FITTINGS
26 0534	OUTLET & JUNCTION BOXES
26 0923	DIGITAL LIGHTING CONTROL SYSTEM
26 2416	PANELBOARDS
26 2726	SWITCHES & RECEPTACLES
26 2816	DISCONNECTS
26 5114	LED LIGHTING FIXTURES & LAMPS
26 9090	ELECTRICAL CLOSEOUT

DIVISION 31 - EARTHWORK

31 2316.13 TRENCHING

DIVISION 32 - EXTERIOR IMPROVEMENTS

32 1216 ASPHALT PAVING

DIVISION 33 - UTILITIES

33 3111 SITE SANITARY UTILITY SEWERAGE PIPING

Lakeside Union School District

SECTION 01 1000 SUMMARY

PART 1 GENERAL

1.01 PROJECT

- A. Project Name: Central Kitchen Improvements Lakeside Union School District.
- B. Owner's Name: Lakeside Union School District.
- C. Architect's Name: AlphaStudio Design Group.
- D. The Project consists of the alteration of the School District's Central Kitchen facility.
 - 1. As shown in Contract Documents prepared by AlphaStudio Design Group; 6152 Innovation Way, Carlsbad, CA 92009; (760) 431-2444.

1.02 DEFINITIONS

- A. C.B.C.: California Building Code.
- B. C.C.R.: California Code of Regulations.
- C. Furnish: To supply products to the project site, including delivery.
- D. Install: To put products in place in the work ready for the intended use, including unloading, unpacking, handling, storing, assembling, installing, erecting, placing, applying, anchoring, working, finishing, curing, protecting, cleaning, and similar operations.
- E. Provide: To furnish and install products.
- F. Indicated: Shown, noted, scheduled, specified, or drawn, somewhere in the Contract Documents.

1.03 REGULATORY REQUIREMENTS

- A. The following regulations are applicable to this project:
 - 1. 2022 California Building Code, Title 24, Part 2, California Code of Regulations (C.C.R.).
 - 2. 2022 California Electrical Code, Title 24, Part 3, California Code of Regulations (C.C.R.).
 - 3. 2022 California Mechanical Code, Title 24, Part 4, California Code of Regulations (C.C.R.).
 - 4. 2022 California Plumbing Code, Title 24, Part 5, California Code of Regulations (C.C.R.).
 - 5. 2022 California Fire Code, Title 24, Part 9, California Code of Regulations (C.C.R.).
- B. Submit copies of all permits, licenses, and similar permissions obtained, and receipts for fees paid, to the owner directly.

1.04 CONTRACT DESCRIPTION

- A. The work consists of the following:
 - 1. The project scope includes the removal of kitchen equipment, reconfiguration of layout, and installation of new equipment as identified in the drawings. Work shall include selective demolition for new improvements, new partition, installation of a new suspended ceiling, painting, refinishing of the existing concrete floor, window removal and replacement, power for equipment, new lighting, plumbing, and mechanical equipment. Sitework to include the installation of a grease interceptor connected to the existing building grease waste system piping.

1.05 OWNER OCCUPANCY

- A. Owner intends to continue to occupy adjacent existing building during the entire construction period.
- B. Owner intends to occupy the Project upon Substantial Completion.
- C. Cooperate with Owner to minimize conflict and to facilitate Owner's operations.
- D. Schedule the Work to accommodate Owner occupancy.

1.06 CONTRACTOR USE OF SITE AND PREMISES

A. Construction Operations: Limited to areas noted on Drawings.

Lakeside Union School District

- B. Arrange use of site and premises to allow:
 - 1. Owner occupancy.
 - 2. Work by Others.
 - 3. Work by Owner.
- C. Provide access to and from site as required by law and by Owner:
 - 1. Emergency Building Exits During Construction: Keep all exits required by code open during construction period; provide temporary exit signs if exit routes are temporarily altered.
 - 2. Do not obstruct roadways, sidewalks, or other public ways without permit.
- D. Utility Outages and Shutdown:
 - 1. Limit disruption of utility services to hours the site is unoccupied.
 - 2. Do not disrupt or shut down life safety systems, including but not limited to fire sprinklers and fire alarm system, without 48-hours notice to Owner and authorities having jurisdiction.
 - 3. Prevent accidental disruption of utility services to other facilities.

PART 2 PRODUCTS - NOT USED PART 3 EXECUTION - NOT USED

Lakeside Union School District

SECTION 01 1141 PROJECT COORDINATION

PART 1 GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and other Division-1 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. This Section specifies administrative and supervisory requirements necessary for Project coordination including, but not necessarily limited to:
 - 1. Coordination.
 - 2. Administrative and supervisory personnel.
 - 3. General installation provisions.
 - 4. Cleaning and protection.

1.03 COORDINATION

- A. Coordinate all aspects of the Work so each portion is installed in proper relationship with the whole, so the Work progresses in the proper order, in a smooth manner, and without interference between the trades.
- B. Observation of Work by others shall not be interpreted as relieving the Contractor from responsibility for coordination of all Work, superintendence of the Work, or scheduling and direction of the Work.
- C. Coordinate construction activities included under various Sections of these Specifications to assure efficient and orderly installation of each part of the Work. Coordinate construction operations included under different Sections of the Specifications that are dependent upon each other for proper installation, connection, and operation.
 - 1. Where installation of one part of the Work is dependent on installation of other components, either before or after its own installation, schedule construction activities in the sequence required to obtain the best results.
 - 2. Where availability of space is limited, coordinate installation of different components to assure maximum accessibility for required maintenance, service and repair.
 - 3. Make adequate provisions to accommodate items scheduled for later installation.
- D. Where necessary, prepare memoranda for distribution to each party involved outlining special procedures required for coordination. Include such items as required notices, reports, and attendance at meetings.
 - 1. Prepare similar memoranda for the Owner and separate Contractors where coordination of their Work is required.
- E. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities to avoid conflicts and ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:
 - 1. Preparation of schedules.
 - 2. Installation and removal of temporary facilities.
 - 3. Delivery and processing of submittals.
 - 4. Progress Meetings.
 - 5. Project Closeout activities.

PART 2 PRODUCTS (NOT APPLICABLE)

PART 3 EXECUTION

3.01 GENERAL INSTALLATION PROVISIONS

A. Inspection of Conditions: Require the Installer of each major component to inspect both the substrate and conditions under which Work is to be performed. Do not proceed until unsatisfactory conditions have been corrected in an acceptable manner.

Lakeside Union School District

- B. Manufacturer's Instructions: Comply with manufacturer's installation instructions and recommendations, to the extent that those instructions and recommendations are more explicit or stringent than requirements contained in Contract Documents.
- C. Inspect materials or equipment immediately upon delivery and again prior to installation. Reject damaged and defective items.
- D. Provide attachment and connection devices and methods necessary for securing Work. Secure Work true to line and level. Allow for expansion and building movement.
- E. Visual Effects; Provide uniform joint widths in exposed Work. Arrange joints in exposed Work to obtain the best visual effect. Refer guestionable choices to the Architect for final decision.
- F. Recheck measurements and dimensions, before starting each installation.
- G. Install each component during weather conditions and Project status that will ensure the best possible results. Isolate each part of the completed construction from incompatible material as necessary to prevent deterioration.
- H. Coordinate temporary enclosures with required inspections and tests, to minimize the necessity of uncovering completed construction for that purpose.
- I. Mounting Heights: Where mounting heights are not indicated, install individual components at standard mounting heights recognized within the industry for the particular application indicated. Refer questionable mounting height decisions to the Architect for final decision.

3.02 STARTING EQUIPMENT AND SYSTEMS

- A. Provide manufacturer's field representative to prepare and start systems.
- B. Adjust for proper operation within manufacturer's published tolerances.
- C. Demonstrate proper operation of equipment to Owner's designated representative.

3.03 CLEANING AND PROTECTION

- A. During handling and installation, clean and protect construction in progress and adjoining materials in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.
- B. Clean and maintain completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.
- C. Limiting Exposures: Supervise construction activities to ensure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

Lakeside Union School District

SECTION 01 2000 PRICE AND PAYMENT PROCEDURES

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Procedures for preparation and submittal of applications for progress payments.
- B. Documentation of changes in Contract Sum and Contract Time.
- C. Contract Change procedures.
- D. Correlation of Contractor submittals based on changes.
- E. Procedures for preparation and submittal of application for final payment.

1.02 RELATED REQUIREMENTS

- A. Documents affecting work of this Section include, but are not necessarily limited to, General Conditions, Supplementary Conditions, Special Conditions, and other Sections in Division 1 of these Specifications.
- B. The Contract Sum and the schedule for payments are described in other Documents of the Contract.

1.03 SCHEDULE OF VALUES

- A. Electronic media printout including equivalent information will be considered in lieu of standard form specified; submit draft to Architect for approval.
- B. Forms filled out by hand will not be accepted.
- C. Submit a printed schedule on AIA Form G703 Application and Certificate for Payment Continuation Sheet. Contractor's standard form or electronic media printout will be considered.
- Submit Schedule of Values in duplicate within 15 days after date of Owner-Contractor Agreement.
- E. Format: Utilize the Table of Contents of this Project Manual. Identify each line item with number and title of the specification Section. Identify site mobilization.
- F. Include separately from each line item, a direct proportional amount of Contractor's overhead and profit.
- G. Revise schedule to list approved Change Orders, with each Application For Payment.

1.04 APPLICATIONS FOR PROGRESS PAYMENTS

- A. Payment Period: Submit at intervals stipulated in the Agreement.
- B. Electronic media printout including equivalent information will be considered in lieu of standard form specified; submit sample to Architect for approval.
- C. Forms filled out by hand will not be accepted.
- D. Present required information two on electronic media printout.
- E. Form: AIA G702 Application and Certificate for Payment and AIA G703 Continuation Sheet including continuation sheets when required.
- F. For each item, provide a column for listing each of the following:
 - 1. Item Number.
 - 2. Description of work.
 - 3. Scheduled Values.
 - 4. Previous Applications.
 - 5. Work in Place and Stored Materials under this Application.
 - 6. Authorized Change Orders.
 - 7. Total Completed and Stored to Date of Application.
 - 8. Percentage of Completion.
 - 9. Balance to Finish.
 - 10. Retainage.

Lakeside Union School District

- G. Execute certification by signature of authorized officer.
- H. Use data from approved Schedule of Values. Provide dollar value in each column for each line item for portion of work performed and for stored products.
- I. List each authorized Change Order as a separate line item, listing Change Order number and dollar amount as for an original item of Work.
- J. Submit three copies of each Application for Payment.
- K. Include the following with the application:
 - 1. Transmittal letter as specified for Submittals in Section 01 3000.
 - 2. Construction progress schedule, revised and current as specified in Section 01 3000.
 - 3. All items listed and required under Article 37 of the General Conditions.
- L. When Architect requires substantiating information, submit data justifying dollar amounts in question. Provide one copy of data with cover letter for each copy of submittal. Show application number and date, and line item by number and description.

M. PROCESSING:

- The Contractor shall submit a proposed Schedule of Values along with a draft Application for Payment to the Architect and Project Inspector for review, comment and approval prior to submitting the first Application for Payment.
- When preparing the Application for Payment each month, the Contractor shall review the proposed percentages of completion of work being applied for with the Project Inspector, who shall approve of the percentages prior to formalizing the Application for Payment. If possible, the percentages should be reviewed with the District, Architect and Project Inspector at the closest scheduled job meeting prior to finalizing.
- 3. The Contractor shall submit three (3) copies of the Applications for Payment, with original signatures to the Project Inspector, who will verify the percentages and sign all copies. The Contractor shall be responsible for delivery to the Architect for signatures.
- 4. The Architect will review the Application for Payment, and the Architect of Record will sign all copies and forward it to the Contractor, who in turn shall be responsible for delivery to the District for signatures, processing and payment.
- 5. Applications for Payment shall be made on a monthly basis and shall be filed by the Contractor to the District in the timeframe as set forth in the General Conditions. Signatures on the Application for Payment shall include the Contractor, Architect, and Project Inspector. The Contractor shall be responsible for obtaining all required signatures. Once all signatures are obtained, Application for Payment may be submitted to the District. Work for payment may be estimated or pro-rated to the end of the month if approved before hand by the District.
- 6. Applications for Payment may include billing for project materials not on-site if these materials have been received and are being stored in a bonded warehouse. Receipts for such project materials must accompany the Application for Payment.
- 7. Applications for Payment will not be processed if As-Built Drawings are not updated to the satisfaction of the Project Inspector and the Architect.

1.05 MODIFICATION PROCEDURES

- A. Submit name of the individual authorized to receive change documents and who will be responsible for informing others in Contractor's employ or subcontractors of changes to the Contract Documents.
- B. For minor changes not involving an adjustment to the Contract Price or Contract Time, Architect will issue instructions directly to Contractor.
- C. Architect's Supplemental Instructions (ASI): Architect will advise of minor changes in the Work not involving an adjustment to Contract Sum or Contract Time as authorized by the Conditions of the Contract by issuing supplemental instructions on Architect's Supplemental Instructions (A.S.I.).
- D. Construction Change Directive (CCD): Architect may issue a document, signed by District, instructing Contractor to proceed with a change in the Work, for subsequent inclusion in a

Lakeside Union School District

Change Order.

- 1. The document will describe the required changes and will designate method of determining any change in Contract Sum or Contract Time.
- 2. Promptly execute the change.
- E. Proposal Request (P.R.): Architect may issue a document which includes a detailed description of a proposed change with supplementary or revised Drawings and specifications, a change in Contract Time for executing the change with a stipulation of any overtime work required and the period of time during which the requested price will be considered valid. Contractor shall prepare and submit a fixed price quotation within 5 days.
 - 1. PROPOSAL REQUEST PRICING:
 - a. The Contractor responds to a Proposal Request using the Proposal Request Pricing area on the Proposal Request form, a copy of which is found at the end of this section. The Contractor completes this form providing an itemized cost breakdown and indicating any extensions of time required. Upon review and acceptance of the cost submitted, and when signed by the Owner and Architect and received by the Contractor, this document becomes effective IMMEDIATELY and the Contractor shall proceed with the approved changes. Proceeding with the changes constitutes acceptance of the cost and time adjustment indicated.
- F. Proposed Contract Modifications (PCM): Contractor may propose a change by submitting a request for change or Proposed Contract Modification (P.C.M.) to the Architect, describing the proposed change and its full effect on the Work, with a statement describing the reason for the change, and the effect on the Contract Sum and Contract Time with full documentation and a statement describing the effect on Work by separate or other contractors. Document any requested substitutions in accordance with Section 01 6000.
 - 1. PROPOSED CONTRACT MODIFICATIONS (P.C.M.'s):
 - a. If additional services are required in the opinion of the Contractor that a Proposal Request has not been issued for, the Contractor issues the Proposed Contract Modification form, a copy of which is found at the end of this section. The Contractor completes this form providing an itemized cost breakdown and any pertinent backup information deemed necessary to fully justify the cost submitted, and indicating any extensions of time required. Upon review and acceptance of the cost submitted, and when signed by the District and Architect and received by the Contractor, this document becomes effective IMMEDIATELY and the Contractor shall proceed with the approved changes. Proceeding with the changes constitutes acceptance of the cost and time adjustment indicated.
 - 2. P.R. / P.C.M. REPLY:
 - a. If the Architect takes exception to any portion of the Proposal Request Pricing and/or Proposed Contract Modification submitted by the Contractor, the Architect shall reply in writing using the the P.R./P.C.M. Reply form. The Contractor shall resubmit a revised P.R. or P.C.M. (utilizing the same number but with a letter suffix, i.e. "P.C.M. #1A") in response to the comments made by the Architect.
 - b. Should the dollar amount of additional costs or credits attributable to the P.R. and/or P.C.M. become a point of contention, the Contractor and the Architect shall each make a reasonable effort to arrive at a mutually agreed upon dollar amount. If an agreement cannot be reached within a reasonable time frame, dollar amounts will be based on the current edition of SAYLOR PUBLICATIONS, INC. CURRENT CONSTRUCTION COSTS. Other cost estimating books or reference materials may be used for determining dollar amounts if acceptable to the General Contractor, Architect and the Owner.
- G. Execution of Change Orders: All approved P.R.'s and P.C.M.'s shall be processed as Change Orders. Architect will issue Change Orders for signatures of parties as provided in the Conditions of the Contract. All Change Orders must be approved by the School Districts Governing Board and D.S.A.
- H. Computation of Change in Contract Amount: As specified in the Agreement and Conditions of the Contract.

Lakeside Union School District

- 1. Refer to Article 40 of General Conditions.
- I. Substantiation of Costs: Provide full information required for evaluation.
 - 1. On request, provide the following data:
 - a. Quantities of products, labor, and equipment.
 - b. Taxes, insurance, and bonds.
 - c. Overhead and profit.
 - d. Justification for any change in Contract Time.
 - e. Credit for deletions from Contract, similarly documented.
 - 2. Support each claim for additional costs with additional information:
 - a. Origin and date of claim.
 - b. Dates and times work was performed, and by whom.
 - c. Time records and wage rates paid.
 - Invoices and receipts for products, equipment, and subcontracts, similarly documented.
 - 3. For Time and Material work, submit itemized account and supporting data after completion of change, within time limits indicated in the Conditions of the Contract.
- J. After execution of Change Order, promptly revise Schedule of Values and Application for Payment forms to record each authorized Change Order as a separate line item and adjust the Contract Sum.
- K. Promptly revise progress schedules to reflect any change in Contract Time, revise subschedules to adjust times for other items of work affected by the change, and resubmit.
- L. Promptly enter changes in Project Record Documents.

1.06 APPLICATION FOR FINAL PAYMENT

- A. As specified in the Agreement and Conditions of the Contract.
 - 1. Refer to Article 37 of the General Conditions.
- B. Prepare Application for Final Payment as specified for progress payments, identifying total adjusted Contract Sum, previous payments, and sum remaining due.
- C. Application for Final Payment will not be considered until the following have been accomplished:
 - 1. All requirements of Article 37 of the General Conditions.
 - DSA Form 6-C Contractor Verified Report filed with the Division of the State Architect.
 - 3. All closeout procedures specified in Section 01780.

Lakeside Union School District

SECTION 01 3000 ADMINISTRATIVE REQUIREMENTS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Preconstruction meeting.
- B. Progress meetings.
- C. Construction progress schedule.

1.02 RELATED REQUIREMENTS

- A. Section 01 1000 Summary: Stages of the Work, Work covered by each contract, occupancy,
- B. Section 01 3010 Submittals: Submittal procedures.
- C. Section 01 7000 Execution and Closeout Requirements: Additional coordination requirements.
- D. Section 01 7800 Closeout Submittals: Project record documents.

1.03 DEFINITIONS

- A. REQUEST FOR INFORMATION (R.F.I.'s):
 - Requests for Information may be generated by the Contractor, any of the Contractor's subcontractors or the Owner's Inspector and should be directed to the Architect through the General Contractor using the form provided at the end of this section. Request for Information forms are used to help clarify and/or interpret the information contained in the Contract Documents or to resolve construction questions in the field.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.01 PRECONSTRUCTION MEETING

- A. District will schedule a meeting after Notice of Award.
- B. Attendance Required:
 - 1. School District Representative.
 - 2. Architect.
 - 3. Contractor.
 - 4. Inspector.
 - 5. Project Superintendent.

C. Agenda:

- 1. Execution of Owner-Contractor Agreement.
- 2. Submission of executed bonds and insurance certificates.
- Distribution of Contract Documents.
- 4. Submission of list of Subcontractors, list of Products, schedule of values, and progress schedule.
- Designation of personnel representing the parties in Contract, School District Representative and the Architect.
- 6. Procedures and processing of field decisions, submittals, substitutions, applications for payments, proposal request, Change Orders, and Contract closeout procedures.
- 7. Scheduling.
- 8. Scheduling activities of a Geotechnical Engineer.
- D. Architect shall record minutes and distribute copies within five days after meeting to participants, with copies to Contractor, School District, Project Inspector, participants, and those affected by decisions made.

Lakeside Union School District

3.02 PROGRESS MEETINGS

- A. Schedule and administer meetings throughout progress of the Work at an interval to be determined by the District.
- B. Architect will make arrangements for meetings, prepare agenda with copies for participants, preside at meetings.
- C. Attendance Required: School District Representative, Architect, Project Inspector, Job Superintendent, Major Subcontractors and suppliers, as appropriate to agenda topics for each meeting.

D. Agenda:

- Review minutes of previous meetings.
- 2. Review of Work progress.
- 3. Field observations, problems, and decisions.
- 4. Identification of problems that impede, or will impede, planned progress.
- 5. Review of submittals schedule and status of submittals.
- 6. Review of off-site fabrication and delivery schedules.
- 7. Contractor update on Safety Program / Storm Water Management.
- 8. Maintenance of progress schedule.
- 9. Corrective measures to regain projected schedules.
- 10. Planned progress during succeeding work period.
- 11. Maintenance of quality and work standards.
- 12. Effect of proposed changes on progress schedule and coordination.
- 13. Other business relating to Work.
- E. The Architect will record minutes and distribute copies prior to the next meeting to participants, with copies to the Owner, Inspector, Contractor, other participants, and those affected by decisions made.
- F. The Progress Meetings are intended to be conducted in an orderly and professional manner. Any foul language or unprofessional conduct will not be tolerated, and will result in the cessation of the meeting. Meetings shall not be recorded without the concurrence of all parties in attendance.

3.03 CONSTRUCTION PROGRESS SCHEDULE - SEE SECTION 01 3216

- A. Refer to Article 7 of the General Conditions for requirements.
- B. The first payment will not be made unless the District has been provided and has accepted the project schedule.
- C. Submit updated schedule with each Application for Payment.

3.04 REQUEST FOR INFORMATION

- A. Request for Information (RFI): Requests for Information may be generated by the Contractor, any of the Contractor's subcontractors or the Owner's Inspector and should be directed to the Architect through the General Contractor using the form provided at the end of this section. Request for Information forms are used to help clarify and/or interpret the information contained in the contract documents or to resolve construction questions in the field.
 - 1. The Architect shall respond in writing within three (3) working days of receipt of the RFI. The Architect will promptly advise the Contractor when a Request for Information being processed will be delayed beyond three (3) working days due to a need for additional information, research or coordination. The Contractor should allow sufficient review time so that the work will not be delayed as a result of the time required to process RFI's. No extension of contract time will be authorized because of failure by the Contractor to transmit RFI's to the Architect sufficiently in advance of work to permit processing.
 - 2. Deductions for Unnecessary or Redundant RFI's: Should the Contractor or the Contractor's subcontractor submit unnecessary or redundant RFI's to the Architect for review, the Architect shall be entitled to bill the Owner at his (Architect's) hourly rate for the additional work generated by the Contractor's inefficiency. The Owner shall then deduct the comparable dollar amount from the payments due the Contractor.

Lakeside Union School District

- 3. Unnecessary and/or Redundant RFI's Include (But Are Not Limited To):
 - a. RFI's questioning items or information clearly noted in the contract documents.
 - b. RFI's generated as a result of a Contractor's substitution or construction error which requires additional coordination with other related items or a revision to the contract documents.

Lakeside Union School District

SECTION 01 3010 SUBMITTALS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Submittal Log
- B. Preparing and processing of submittals for review and action.
- C. Preparing and processing of informational submittals.

1.02 DEFINITIONS

- A. "Shop drawings" are drawings and other data prepared, by the entity who is to do the work, specifically to show a portion of the work.
- B. "Product data submittals" are standard printed data which show or otherwise describe a product or system, or some other portion of the work.
 - 1. Product data submittals also include:
 - a. Performance curves, when issued by the manufacturer for all products of that type.
 - b. Selection data showing standard colors.
 - c. Wiring diagrams, when standard for all products of that type.
- C. "Samples" are actual examples of the products or work to be installed.
- D. Informational Submittals: Submittals identified in the contract documents as to be submitted for information only.

1.03 SUBMITTAL LOG

- A. Contractor shall prepare submittal log in format approved by the Architect and School District.
- B. As a minimum the submittal log shall list all submittals required by the contract documents, with assigned submittal number, corresponding specification section and description of submittal.

1.04 SUBMITTALS FOR REVIEW

- A. Submit the following for the architect's review and action:
 - Shop drawings.
 - 2. Structural design information required by the contract documents.
 - 3. Product data.
 - 4. Samples.
 - 5. Submittals indicated as "for approval."
 - 6. Submittals for which procedures are not defined elsewhere.
- B. Submit to Architect for review for the limited purpose of checking fro conformance with information given and the design concept expressed in the contract documents.
- C. Samples will be reviewed only for aesthetic, color, or finish selection.
- D. After review, provide copies and distribute in accordance with SUBMITTAL PROCEDURES article below and for record documents purposes described in Section 01 7800 - Closeout Submittals.

1.05 SUBMITTALS FOR INFORMATION

- A. When the following are specified in individual sections, submit them for information:
 - Certificates.
 - 2. Coordination drawings.
 - 3. Test reports.
 - 4. Inspection reports.
 - Manufacturer's instructions.
 - 6. Manufacturer's field reports.
 - 7. Qualification statements from manufacturers / installers.
 - 8. Verified Reports in accordance with Title 24, Part 1, Article 47336, C.C.R.

Lakeside Union School District

1.06 SUBMITTALS FOR PROJECT CLOSEOUT

- A. When the following are specified in individual sections, submit them at project closeout:
 - 1. Project record documents.
 - 2. Operation and maintenance data.
 - 3. Warranties.
 - 4. Bonds.
 - 5. Other types as indicated.
- B. Submit for Owner's benefit during and after project completion.

1.07 SUBMITTAL REQUIREMENTS

- A. Do not commence work that requires review of any submittals until receipt of returned submittals with an acceptable action.
- B. Do not allow submittals without an acceptable action marking to be used for the project.
- C. Submit all submittals to the Architect.
- All Submittals for the project shall be delivered to the Architect's office within five (5) days from the Notice to Proceed.
- E. Do not submit substitute items that have not been approved by means of the procedure specified elsewhere.
- F. Do not include requests for substitution (either direct or indirect) on submittals; comply with procedures for substitutions specified elsewhere.
- G. Related Sections: The following are specified elsewhere in Division 1:
 - 1. 01 2000 PRICE AND PAYMENT PROCEDURES
 - a. Payment, modification, and completion submittals.
 - 1) Applications for payment.
 - Schedule of values.
 - 3) Change proposals.
 - 2. 01 3216 CONSTRUCTION PROGRESS SCHEDULE
 - a. Progress of work submittals:
 - 1) Contractor's construction schedules.
 - 3. 01 4000 QUALITY REQUIREMENTS
 - a. Quality control submittals:
 - 1) Inspection reports.
 - 2) Test reports.
 - 4. 01 6000 PRODUCT REQUIREMENTS
 - a. Product submittals:
 - 1) Requests for Substitution.
 - 2) Maintenance materials and tools.
 - 5. 01 7800 CLOSEOUT SUBMITTALS
 - a. Contract closeout submittals:
 - 1) Equipment and systems demonstration reports.
 - 2) Operating and maintenance data.
 - 3) Request for determination of substantial completion.
 - 4) Project record documents.
 - 5) Warranties.
 - 6) Bonds.

1.08 NUMBER OF COPIES OF SUBMITTALS

- A. Documents for Review:
 - 1. Small Size Sheets, Not Larger Than 8-1/2 x 11 inches: Submit the number of copies which the Contractor requires, plus [four] copies which will be retained by the Architect.
 - 2. Larger Sheets, Not Larger Than 36 x 48 inches: Submit the number of opaque reproductions which Contractor requires, plus [four] copies which will be retained by

Lakeside Union School District

Architect.

- 3. In lieu of hard copy submittals, electronic submittals are acceptable except for material and/or color selection samples.
- B. Documents for Information: Submit [three] copies.
- C. Documents for Project Closeout: Make one reproduction of submittal originally reviewed. Submit one extra of submittals for information.
- D. Samples: Submit the number specified in individual specification sections; one of which will be retained by Architect.
 - 1. After review, produce duplicates.
 - 2. Retained samples will not be returned to Contractor unless specifically so stated.
- E. Copies in excess of the number requested will not be returned.
- F. Provide additional copies, if required for operating and maintenance data, marked to indicate their purpose.

1.09 SUBMITTAL PROCEDURES

A. Coordination:

- Coordinate preparation and processing of submittals with performance of construction activities. Transmit each submittal sufficiently in advance of performance of related construction activities to avoid delay.
 - a. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals and related activities that require sequential activity.
 - Coordinate transmittal of different types of submittals for related elements of the Work so processing will not be delayed by the need to review submittals concurrently for coordination.
 - The Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until all related submittals are received.

B. Processing:

- 1. Allow sufficient review time so that installation will not be delayed as a result of the time required to process submittals, including time for resubmittals.
 - a. For each submittal for review, allow 5 days excluding delivery time to and from the Architect. Allow additional time if processing time must be delayed to permit coordination with subsequent submittals. The Architect shall promptly advise the General Contractor when a submittal being processed must be delayed for coordination.
 - 1) Exceptions:
 - (a) Deferred Approval Submittal through the Division of the State Architect's office. Due to the nature of these submittals, no estimated return date can be given.
 - (b) Complicated Shop Drawings may require more than ten days for proper review time and coordination.
 - (c) If numerous Submittals are provided within a short period of time, the review time may not be able to be met. In these cases, the Contractor should clearly identify on the Submittal Transmittal which Submittals have the highest priority in terms of the Project Schedule and related construction activities.
 - b. If an intermediate submittal is necessary, process the same as the initial submittal.
 - c. Allow two weeks for reprocessing each submittal.
 - d. When revised for resubmission, identify all changes made since previous submission.
 - e. No extension of Contract Time will be authorized because of the failure to transmit submittals to the Architect sufficiently in advance of the Work to permit processing and review.

C. Submittal Preparation:

1. Place a permanent label or title block on each submittal for identification. Indicate the name of the entity that prepared each submittal on the label or title block.

Lakeside Union School District

- a. Provide a space approximately 4" x 5" on the label or besides the title block on Shop Drawings to record the Architect's/Engineer's review and approval markings and the action taken.
- b. Include the following information on the label for processing and recoding action taken:
 - 1) Project Name.
 - 2) Date.
 - 3) Name and address of Architect.
 - Name and address of District.
 - 5) Name and address of Subcontractor.
 - 6) Name and address of Supplier.
 - 7) Name of manufacturer.
 - 8) Number and title of the appropriate Specification Section.
 - 9) Drawing number and detail references, as appropriate.

D. Submittal Transmittal:

- Package each submittal appropriately for transmittal and handling. Transmit each submittal from District or General Contractor to Architect using a standard "Submittal Transmittal" form in a format that is acceptable to the Architect and District. Submittals received from sources other than the District or General Contractor will be returned without action.
- 2. Sequentially number the transmittal form. Revise submittals with original number and a sequential alphabetic suffix.
- 3. On the transmittal, record relevant information and requests for data.
- 4. Apply Contractor's stamp, signed or initialed certifying that review, approval, verification of Products required, field dimensions, adjacent construction Work, and coordination of information is in accordance with the requirements of the Work and Contract Documents.
- 5. Deliver submittals to Architect at business address.
- 6. Schedule submittals to expedite the Project, and coordinate submission of related items.
- 7. Identify all variations from Contract Documents, and all Product or system limitations which may be detrimental to successful performance of the completed Work.
 - a. Failure to identify all variations and limitations will be cause for retroactive rejection of submittals previously approved.

E. Distribution:

1. Distribute copies of reviewed submittals as appropriate. Instruct parties to promptly report any inability to comply with requirements.

1.10 COORDINATION OF SUBMITTALS

- A. Coordinate submittals and activities that must be performed in sequence, so that the architect has enough information to properly review the submittals.
- B. Coordinate submittals of different types for the same product or system so that the architect has enough information to properly review each submittal.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.01 TIMING OF SUBMITTALS

- A. Transmit each submittal at or before the time indicated on the approved schedule of submittals.
 - Prepare and submit for approval a schedule showing the required dates of submittal of all submittals.
 - 2. Organize the schedule by the applicable specification section number.
 - 3. Incorporate the contractor's construction schedule specified elsewhere.
 - 4. ALL SUBMITTALS FOR THE PROJECT SHALL BE DELIVERED TO THE ARCHITECT'S OFFICE WITHIN FIVE (5) DAYS FROM THE NOTICE TO PROCEED.
- B. Deliver each submittal requiring approval in time to allow for adequate review and processing time, including resubmittals if necessary; failure of the contractor in this respect will not be

Lakeside Union School District

- considered as grounds for an extension of the contract time.
- C. Deliver each informational submittal prior to start of the work involved, unless the submittal is of a type which cannot be prepared until after completion of the work; submit promptly.
- D. Allow a minimum of 5 business days for the first processing of each submittal. Allow more time when submittals must be coordinated with later submittals, or are more technical in nature and require more review and coordination time.
- E. Allow a minimum of 3 business days for processing of resubmittals.
- F. If a submittal must be delayed for coordination with other submittals not yet submitted, the architect may at his option either return the submittal with no action or notify the contractor of the other submittals, which must be received before the submittal can be reviewed.

3.02 SUBMITTAL PROCEDURES - GENERAL

- A. Contractor Review: Sign each copy of each submittal certifying compliance with the requirements of the contract documents.
- B. Notify the architect, in writing and at time of submittal, of all points upon which the submittal does not conform to the requirements of the contract documents, if any. All deviations form the Contract Documents must be clearly indicated on the submittal. All submittals for materials or equipment other than that specified must be submitted with properly completed Substitution Request Form.
- C. Preparation of Submittals:
 - 1. Label each copy of each submittal, with the following information:
 - a. Project name.
 - b. Date of submittal.
 - c. Contractor's name and address.
 - d. Architect's name and address.
 - e. Subcontractor's name and address.
 - f. Manufacturer's name.
 - g. Specification section where the submittal is specified.
 - h. Numbers of applicable drawings and details.
 - i. Other necessary identifying information.
 - 2. Pack submittals suitably for shipment.
 - 3. Submittals to receive architect's action marking: Provide blank space on the label or on the submittal itself for action marking; minimum 4 inches wide by 5 inches high.

D. Transmittal of Submittals:

- Submittals will be accepted from the contractor only. Submittals received from other entities will be returned without review or action.
- 2. Submittals received without a transmittal form will be returned without review or action.
- 3. Transmittal form: Use a form matching the sample form attached to this section.
- 4. Fill out a separate transmittal form for each submittal; also include the following:
 - a. Other relevant information.
 - b. Requests for additional information.

3.03 SHOP DRAWINGS

- A. Content: Include the following information:
 - 1. Dimensions, at accurate scale.
 - 2. All field measurements that have been taken, at accurate scale.
 - 3. Names of specific products and materials used.
 - 4. Details, identified by contract document sheet and detail numbers.
 - 5. Show compliance with the specific standards referenced.
 - 6. Coordination requirements; show relationship to adjacent or critical work.
 - 7. Name of preparing firm.
- B. Preparation:
 - 1. Reproductions of contract documents are not acceptable as shop drawings.

Lakeside Union School District

2. Space for architect's action marking shall be adjacent to the title block.

3.04 PRODUCT DATA

A. Content:

- 1. Submit manufacturer's standard printed data sheets.
- 2. Identify the particular product being submitted; submit only pertinent pages.
- 3. Show compliance with properties specified.
- 4. Identify which options and accessories are applicable.
- 5. Show compliance with the specific standards referenced.
- 6. Show compliance with specified testing agency listings; show the limitations of their labels or seals, if any.
- 7. Identify dimensions which have been verified by field measurement.
- 8. Show special coordination requirements for the product.

3.05 SAMPLES

A. Samples:

- 1. Provide samples that are the same as proposed product.
- 2. Where unavoidable variations must be expected, submit "range" samples, minimum of 3 units, and describe or identify variations among units of each set.
- 3. Where selection is required, provide full set of all options.

B. Preparation:

- 1. Attach a description to each sample.
- 2. Attach name of manufacturer or source to each sample.
- 3. Where compliance with specified properties is required, attach documentation showing compliance.
- 4. Where there are limitations in availability, delivery, or other similar characteristics, attach description of such limitations.
- 5. Where selection is required, the first submittal may be a single set of all options; after return of submittal with selection indicated, submit standard number of sets of selected item.
- C. Keep final sample set(s) at the project site, available for use during progress of the work.

3.06 REVIEW OF SUBMITTALS

- A. Submittals for approval will be reviewed, marked with appropriate action, and returned.
 - 1. Informational submittals: Submittals will be reviewed.

3.07 RETURN, RESUBMITTAL, AND DISTRIBUTION

- A. Submittals will be returned to the contractor by mail.Perform resubmittals in the same manner as original submittals; indicate all changes other than those requested by the architect.
- B. Perform resubmittals in the same manner as original submittals; indicate all changes other than those requested by the architect.
 - 1. Exception: Transmittal number for resubmittals shall be the number of the original submittal plus a letter suffix; example: 05500-1 would become 05500-1 A.

C. Distribution:

- 1. Distribute returned submittals to all subcontractors and suppliers involved in work covered by the submittal.
- 2. Make one copy for project record documents.

Lakeside Union School District

SECTION 01 3216 CONSTRUCTION PROGRESS SCHEDULE

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Preliminary schedule.
- B. Construction progress schedule, bar chart type.

1.02 REFERENCES

A. AGC (CPSM) - Construction Planning and Scheduling Manual 2004.

1.03 SUBMITTALS

- A. Within 10 days after date of Agreement, submit preliminary schedule defining planned operations for the first 60 days of Work, with a general outline for remainder of Work.
- B. If preliminary schedule requires revision after review, submit revised schedule within 10 days.
- C. Within 20 days after review of preliminary schedule, submit draft of proposed complete schedule for review.
 - Include written certification that major contractors have reviewed and accepted proposed schedule.
- D. Within 10 days after joint review, submit complete schedule.
- E. Submit updated schedule with each Application for Payment.
- F. Submit the number of opaque reproductions that Contractor requires, plus three copies that will be retained by Architect.
- G. Submit under transmittal letter form specified in Section 01 3000 Administrative Requirements.

1.04 QUALITY ASSURANCE

A. Scheduler: Contractor's personnel or specialist Consultant specializing in CPM scheduling with one years minimum experience in scheduling construction work of a complexity comparable to this Project, and having use of computer facilities capable of delivering a detailed graphic printout within 48 hours of request.

1.05 SCHEDULE FORMAT

- A. Listings: In chronological order according to the start date for each activity. Identify each activity with the applicable specification section number.
- B. Diagram Sheet Size: Maximum 30 x 42 inches or width required.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.01 PRELIMINARY SCHEDULE

A. Prepare preliminary schedule in the form of a horizontal bar chart.

3.02 CONTENT

- A. Show complete sequence of construction by activity, with dates for beginning and completion of each element of construction.
- B. Identify each item by specification section number.
- C. Identify work of separate stages and other logically grouped activities.
- D. Provide sub-schedules for each stage of Work identified in Section 01 1000.
- E. Provide sub-schedules to define critical portions of the entire schedule.
- F. Show accumulated percentage of completion of each item, and total percentage of Work completed, as of the first day of each month.

Lakeside Union School District

- G. Provide separate schedule of submittal dates for shop drawings, product data, and samples, owner-furnished products, and dates reviewed submittals will be required from Architect. Indicate decision dates for selection of finishes.
- H. Provide legend for symbols and abbreviations used.

3.03 BAR CHARTS

- A. Include a separate bar for each major portion of Work or operation.
- B. Identify the first work day of each week.

3.04 UPDATING SCHEDULE

- A. Maintain schedules to record actual start and finish dates of completed activities.
- Indicate progress of each activity to date of revision, with projected completion date of each activity.
- C. Annotate diagrams to graphically depict current status of Work.
- Identify activities modified since previous submittal, major changes in Work, and other identifiable changes.
- E. Indicate changes required to maintain Date of Substantial Completion.
- F. Submit reports required to support recommended changes.
- G. Provide narrative report to define problem areas, anticipated delays, and impact on the schedule. Report corrective action taken or proposed and its effect including the effects of changes on schedules of separate contractors.

3.05 DISTRIBUTION OF SCHEDULE

- A. Distribute copies of updated schedules to Contractor's project site file, to Subcontractors, suppliers, Architect, Owner, Project Inspector, and other concerned parties.
- B. Instruct recipients to promptly report, in writing, problems anticipated by projections shown in schedules.

Lakeside Union School District

SECTION 01 4000 QUALITY REQUIREMENTS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Submittals.
- B. References and standards.
- C. Control of installation.
- D. Testing and inspection agencies and services.
- E. Control of installation.
- F. Manufacturers' field services.
- G. Defect Assessment.

1.02 RELATED REQUIREMENTS

- A. Section 01 3010 Submittals: Submittal procedures.
- B. Section 01 4219 Reference Standards.

1.03 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Certificates: When specified in individual specification sections, submit certification by the manufacturer and Contractor or installation/application subcontractor to Architect, in quantities specified for Product Data.
 - 1. Indicate material or product conforms to or exceeds specified requirements. Submit supporting reference data, affidavits, and certifications as appropriate.
 - 2. Certificates may be recent or previous test results on material or product, but must be acceptable to Architect.
- C. Manufacturer's Instructions: When specified in individual specification sections, submit printed instructions for delivery, storage, assembly, installation, start-up, adjusting, and finishing, for the Owner's information. Indicate special procedures, perimeter conditions requiring special attention, and special environmental criteria required for application or installation.
- D. Manufacturer's Field Reports: Submit reports for Architect's benefit as contract administrator or for Owner.
 - 1. Submit report in duplicate within 30 days of observation to Architect for information.
 - 2. Submit for information for the limited purpose of assessing conformance with information given and the design concept expressed in the contract documents.
- E. Erection Drawings: Submit drawings for Architect's benefit as contract administrator or for Owner.
 - Submit for information for the limited purpose of assessing conformance with information given and the design concept expressed in the contract documents.
 - 2. Data indicating inappropriate or unacceptable Work may be subject to action by Architect or Owner.

1.04 REFERENCES AND STANDARDS

- A. For products and workmanship specified by reference to a document or documents not included in the Project Manual, also referred to as reference standards, comply with requirements of the standard, except when more rigid requirements are specified or are required by applicable codes.
- B. Conform to reference standard of date of issue current on date of Contract Documents, except where a specific date is established by applicable code.
- C. Obtain copies of standards where required by product specification sections.
- D. Maintain copy at project site during submittals, planning, and progress of the specific work, until Substantial Completion.

Lakeside Union School District

- E. Should specified reference standards conflict with Contract Documents, request clarification from Architect before proceeding.
- F. Neither the contractual relationships, duties, or responsibilities of the parties in Contract nor those of Architect shall be altered from the Contract Documents by mention or inference otherwise in any reference document.

1.05 TESTING AND INSPECTION AGENCIES AND SERVICES

- A. Owner will employ and pay for services of an independent testing agency to perform other specified testing. Refer to Section 01 9010 Testing and Inspection Requirements.
- B. Employment of agency in no way relieves Contractor of obligation to perform Work in accordance with requirements of Contract Documents.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.01 CONTROL OF INSTALLATION

- A. Monitor quality control over suppliers, manufacturers, products, services, site conditions, and workmanship, to produce Work of specified quality.
- B. Comply with manufacturers' instructions, including each step in sequence.
- C. Should manufacturers' instructions conflict with Contract Documents, request clarification from Architect before proceeding.
- D. Comply with specified standards as minimum quality for the Work except where more stringent tolerances, codes, or specified requirements indicate higher standards or more precise workmanship.
- E. Have Work performed by persons qualified to produce required and specified quality.
- F. Verify that field measurements are as indicated on shop drawings or as instructed by the manufacturer.
- G. Secure products in place with positive anchorage devices designed and sized to withstand stresses, vibration, physical distortion, and disfigurement.

3.02 TESTING AND INSPECTION

- A. See Specification Section 01 9010 for testing required.
- B. Contractor Responsibilities:
 - 1. Deliver to agency at designated location, adequate samples of materials proposed to be used that require testing, along with proposed mix designs.
 - Cooperate with laboratory personnel, and provide access to the Work and to manufacturers' facilities.
 - 3. Provide incidental labor and facilities:
 - a. To provide access to Work to be tested/inspected.
 - b. To obtain and handle samples at the site or at source of Products to be tested/inspected.
 - c. To facilitate tests/inspections.
 - d. To provide storage and curing of test samples.
 - 4. Notify Architect and laboratory 48 hours prior to expected time for operations requiring testing/inspection services.
 - 5. Arrange with Owner's agency and pay for additional samples, tests, and inspections required by Contractor beyond specified requirements.
- C. Re-testing required because of non-conformance to specified requirements shall be performed by the same agency on instructions by Architect.
- Re-testing required because of non-conformance to specified requirements shall be paid for by Contractor.
- E. Re-testing required because of non-conformance to specified requirements shall be performed by the same agency on instructions by the Architect. Payment for re-testing will be charged to

Lakeside Union School District

the Contractor by deducting testing charges from the Contract Sum/Price.

3.03 MANUFACTURERS' FIELD SERVICES

Α.	When specified in individual specification sections, require material or product suppliers or
	manufacturers to provide qualified staff personnel to observe site conditions, conditions of
	surfaces and installation, quality of workmanship, start-up of equipment, test, adjust and
	balance of equipment and as applicable, and to initiate instructions when necessary

B. Report observations and site decisions or instructions given to applicators or installers that are supplemental or contrary to manufacturers' written instructions.

3.04 DEFECT ASSESSMENT

- A. Replace Work or portions of the Work not conforming to specified requirements.
- B. If, in the opinion of Architect, it is not practical to remove and replace the Work, Architect will direct an appropriate remedy or adjust payment.

Lakeside Union School District

SECTION 01 5000 TEMPORARY FACILITIES AND CONTROLS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Temporary sanitary facilities.
- B. Temporary Controls: Barriers, enclosures, and fencing.
- C. Security requirements.
- Vehicular access and parking.
- E. Waste removal facilities and services.

1.02 TEMPORARY SANITARY FACILITIES

- A. Provide and maintain required facilities and enclosures. Provide at time of project mobilization through to project completion.
- B. Maintain daily in clean and sanitary condition.

1.03 BARRIERS

- A. Provide barriers to prevent unauthorized entry to construction areas, to prevent access to areas that could be hazardous to workers or the public, to allow for owner's use of site and to protect existing facilities and adjacent properties from damage from construction operations and demolition.
- B. Provide barricades and covered walkways required by governing authorities for public rights-of-way and for public access to existing building.
- C. Provide protection for plants designated to remain. Replace damaged plants.
- D. Protect non-owned vehicular traffic, stored materials, site, and structures from damage.

1.04 FENCING

- A. Construction: Commercial grade chain link fence.
- B. Provide 6 foot high fence around construction site; equip with vehicular and pedestrian gates with locks as required.

1.05 INTERIOR ENCLOSURES

- A. Provide temporary partitions and ceilings as indicated to separate work areas from Owner-occupied areas, to prevent penetration of dust and moisture into Owner-occupied areas, and to prevent damage to existing materials and equipment.
- B. Construction: Framing and reinforced polyethylene sheet materials with closed joints and sealed edges at intersections with existing surfaces:

1.06 SECURITY

A. Provide security and facilities to protect Work, existing facilities, and Owner's operations from unauthorized entry, vandalism, or theft.

1.07 VEHICULAR ACCESS AND PARKING

- A. Comply with regulations relating to use of streets and sidewalks, access to emergency facilities, and access for emergency vehicles.
- B. Coordinate access and haul routes with governing authorities and Owner.
- C. Provide and maintain access to fire hydrants, free of obstructions.
- D. Provide means of removing mud from vehicle wheels before entering streets.

1.08 WASTE REMOVAL

- A. Provide waste removal facilities and services as required to maintain the site in clean and orderly condition.
- B. Provide containers with lids. Remove trash from site weekly.

Lakeside Union School District

C. If materials to be recycled or re-used on the project must be stored on-site, provide suitable non-combustible containers; locate containers holding flammable material outside the structure unless otherwise approved by the authorities having jurisdiction.

1.09 REMOVAL OF UTILITIES, FACILITIES, AND CONTROLS

- A. Remove temporary utilities, equipment, facilities, materials, prior to Date of Substantial Completion inspection.
- B. Clean and repair damage caused by installation or use of temporary work.
- C. Restore existing facilities used during construction to original condition.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION - NOT USED

Lakeside Union School District

SECTION 01 6000 PRODUCT REQUIREMENTS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. General product requirements.
- B. Re-use of existing products.
- C. Transportation, handling, storage and protection.
- D. Product option requirements.
- E. Substitution limitations and procedures.
- F. Maintenance materials, including extra materials, spare parts, tools, and software.

1.02 RELATED REQUIREMENTS

A. Section 01 4000 - Quality Requirements: Product quality monitoring.

1.03 SUBMITTALS

- A. Product Data Submittals: Submit manufacturer's standard published data. Mark each copy to identify applicable products, models, options, and other data. Supplement manufacturers' standard data to provide information specific to this Project.
- B. Shop Drawing Submittals: Prepared specifically for this Project; indicate utility and electrical characteristics, utility connection requirements, and location of utility outlets for service for functional equipment and appliances.
- C. Sample Submittals: Illustrate functional and aesthetic characteristics of the product, with integral parts and attachment devices. Coordinate sample submittals for interfacing work.
 - 1. For selection from standard finishes, submit samples of the full range of the manufacturer's standard colors, textures, and patterns.
- D. Indicate utility and electrical characteristics, utility connection requirements, and location of utility outlets for service for functional equipment and appliances.

PART 2 PRODUCTS

2.01 EXISTING PRODUCTS

- A. Do not use materials and equipment removed from existing premises unless specifically required or permitted by the Contract Documents.
- B. Existing materials and equipment indicated to be removed, but not to be re-used, relocated, reinstalled, delivered to the Owner, or otherwise indicated as to remain the property of the Owner, become the property of the Contractor; remove from site. However, The Owner has the first right of refusal on all existing materials and equipment indicated to be removed, but not to be re-used.

2.02 NEW PRODUCTS

- A. Provide new products unless specifically required or permitted by the Contract Documents.
- B. DO NOT USE products having any of the following characteristics:
 - 1. Made using or containing CFC's or HCFC's.
- C. Provide interchangeable components of the same manufacture for components being replaced.

2.03 PRODUCT OPTIONS

- A. Products Specified by Reference Standards or by Description Only: Use any product meeting those standards or description.
- B. Products Specified by Naming One or More Manufacturers: Use a product of one of the manufacturers named and meeting specifications, no options or substitutions allowed.
- C. Products Specified by Naming One or More Manufacturers with a Provision for Substitutions: Submit a request for substitution for any manufacturer not named.

Lakeside Union School District

2.04 MAINTENANCE MATERIALS

- A. Furnish extra materials, spare parts, tools, and software of types and in quantities specified in individual specification sections.
- B. Deliver to Project site; obtain receipt prior to final payment.

PART 3 EXECUTION

3.01 SUBSTITUTIONS DURING THE BIDDING PERIOD

- A. Substitution requests submitted later than 7 days prior to the Bid Date will not be considered.
- B. Acceptable substitutions will be added to the contract documents by addendum; no verbal approvals will be valid.

3.02 SUBSTITUTIONS AFTER AWARD OF THE CONTRACT

- Substitutions will not be considered between the Bid date and the Award of the Contract.
- B. Substitutions will not be allowed after Award of the Contract except when, through no fault of the Contractor, none of the specified products are available.
 - Architect will consider requests for substitutions only within 30 days after date of Agreement.

3.03 SUBSTITUTION PROCEDURES

- A. Document each request with complete data substantiating compliance of proposed substitution with Contract Documents.
- B. A request for substitution constitutes a representation that the submitter:
 - 1. Has investigated proposed product and determined that it meets or exceeds the quality level of the specified product.
 - 2. Agrees to provide the same warranty for the substitution as for the specified product.
 - 3. Will coordinate installation and make changes to other Work which may be required for the Work to be complete with no additional cost to Owner, including:
 - a. Redesign.
 - b. Additional components and capacity required by other work affected by the change.
 - 4. Waives claims for additional costs or time extension that may subsequently become apparent.
- C. Substitutions will not be considered when they are indicated or implied on shop drawing or product data submittals, without separate written request, or when acceptance will require revision to the Contract Documents.
- D. Substitutions will not be considered when submitted directly by subcontractor or supplier.
- E. Substitution Submittal Procedure: Submit written request with complete data substantiating compliance of the proposed product with the requirements of the Contract Documents, utilizing the form provided in the bid documents.
 - Submit three copies of request for substitution for consideration. Limit each request to one proposed substitution.
 - 2. Submit shop drawings, product data, and certified test results attesting to the proposed product equivalence. Burden of proof is on proposer.
 - 3. Substitutions shall be considered as a Change Order, and shall be approved by DSA prior to fabrication or use.
 - The Architect will notify Contractor in writing of decision to accept or reject request.
- F. Data Required with Substitution Request: Provide at least the following data:
 - 1. Identify product by specification section and paragraph number.
 - 2. Manufacturer's name and address, trade name and model number of product (if applicable), and name of the fabricator or supplier (if applicable).
 - 3. Complete Product Data.
 - 4. A list of other projects on which the proposed product has been used, with Project Name, the Design Professionals name, and Owner contact.
 - 5. A itemized side-by-side comparison of the proposed product to the specified product.

Lakeside Union School District

- 6. Net amount of change to the contract sum.
- 7. List of maintenance services and replacement materials available.
- 8. Statement of the effect of the substitution on the construction schedule.
- 9. Description of changes that will be required in other work or products if the substitute product is approved.
- G. The Architect will determine the acceptability of the proposed substitution.
- H. There are certain items and/or products that are specified for this project that are District Standards, where no substitutions will be accepted. If this is the case, the Substitution Request related to a District Standard shall be responded to stating such fact.
- I. When the proposed substitution is accepted, provide the product (or one of the products, as the case may be) specified.
- J. All changes in the work that affects the Structural, Access, or Fire & Life Safety portions of the project shall be submitted to DSA for review and approval as required per CBC 2019 Part 1 Section 4-338.

3.04 TRANSPORTATION AND HANDLING

- A. Package products for shipment in manner to prevent damage; for equipment, package to avoid loss of factory calibration.
- B. If special precautions are required, attach instructions prominently and legibly on outside of packaging.
- C. Coordinate schedule of product delivery to designated prepared areas in order to minimize site storage time and potential damage to stored materials.
- D. Transport and handle products in accordance with manufacturer's instructions.
- E. Transport materials in covered trucks to prevent contamination of product and littering of surrounding areas.
- F. Promptly inspect shipments to ensure that products comply with requirements, quantities are correct, and products are undamaged.
- G. Provide equipment and personnel to handle products by methods to prevent soiling, disfigurement, or damage, and to minimize handling.
- H. Arrange for the return of packing materials, such as wood pallets, where economically feasible.

3.05 STORAGE AND PROTECTION

- A. Designate receiving/storage areas for incoming products so that they are delivered according to installation schedule and placed convenient to work area in order to minimize waste due to excessive materials handling and misapplication.
- B. Store and protect products in accordance with manufacturers' instructions.
- C. Store with seals and labels intact and legible.
- D. Store sensitive products in weather tight, climate controlled, enclosures in an environment favorable to product.
- E. For exterior storage of fabricated products, place on sloped supports above ground.
- F. Provide bonded off-site storage and protection when site does not permit on-site storage or protection.
- G. Protect products from damage or deterioration due to construction operations, weather, precipitation, humidity, temperature, sunlight and ultraviolet light, dirt, dust, and other contaminants.
- H. Comply with manufacturer's warranty conditions, if any.
- I. Cover products subject to deterioration with impervious sheet covering. Provide ventilation to prevent condensation and degradation of products.
- J. Prevent contact with material that may cause corrosion, discoloration, or staining.

Lakeside Union School District

- K. Provide equipment and personnel to store products by methods to prevent soiling, disfigurement, or damage.
- L. Arrange storage of products to permit access for inspection. Periodically inspect to verify products are undamaged and are maintained in acceptable condition.

Lakeside Union School District

SECTION 01 7000 EXECUTION AND CLOSEOUT REQUIREMENTS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Examination, preparation, and general installation procedures.
- B. Requirements for alterations work, including selective demolition, except removal, disposal, and/or remediation of hazardous materials and toxic substances.
- C. Pre-installation meetings.
- D. Cutting and patching.
- E. Cleaning and protection.
- F. Starting of systems and equipment.
- G. Demonstration and instruction of Owner personnel.
- H. General requirements for maintenance service.

1.02 RELATED REQUIREMENTS

- A. Section 01 3010 Submittals: Submittal procedures.
- B. Section 01 7800 Closeout Submittals: Project record documents, operation and maintenance data, warranties and bonds.

1.03 SUBMITTALS

- A. See Section 01 3010 Submittals, for submittal procedures.
- B. Cutting and Patching: Submit written request in advance of cutting or alteration that affects:
 - Structural integrity of any element of Project.
 - 2. Integrity of weather exposed or moisture resistant element.
 - 3. Efficiency, maintenance, or safety of any operational element.
 - 4. Visual qualities of sight exposed elements.
 - 5. Work of Owner or separate Contractor.

1.04 PROJECT CONDITIONS

- A. Grade site to drain. Maintain excavations free of water. Provide, operate, and maintain pumping equipment.
- B. Protect site from puddling or running water. Provide water barriers as required to protect site from soil erosion.
- C. Ventilate enclosed areas to assist cure of materials, to dissipate humidity, and to prevent accumulation of dust, fumes, vapors, or gases.
- D. Noise Control: Provide methods, means, and facilities to minimize noise produced by construction operations.
- E. Pest and Rodent Control: Provide methods, means, and facilities to prevent pests and insects from damaging the work.
- Rodent Control: Provide methods, means, and facilities to prevent rodents from accessing or invading premises.

1.05 COORDINATION

- A. Coordinate scheduling, submittals, and work of the various sections of the Project Manual to ensure efficient and orderly sequence of installation of interdependent construction elements, with provisions for accommodating items installed later.
- B. Notify affected utility companies and comply with their requirements.
- C. Verify that utility requirements and characteristics of new operating equipment are compatible with building utilities. Coordinate work of various sections having interdependent responsibilities for installing, connecting to, and placing in service, such equipment.

Lakeside Union School District

- D. Coordinate space requirements, supports, and installation of mechanical and electrical work that are indicated diagrammatically on Drawings. Follow routing shown for pipes, ducts, and conduit, as closely as practicable; place runs parallel with lines of building. Utilize spaces efficiently to maximize accessibility for other installations, for maintenance, and for repairs.
- E. In finished areas except as otherwise indicated, conceal pipes, ducts, and wiring within the construction. Coordinate locations of fixtures and outlets with finish elements.
- F. Coordinate completion and clean-up of work of separate sections.
- G. After Owner occupancy of premises, coordinate access to site for correction of defective work and work not in accordance with Contract Documents, to minimize disruption of Owner's activities.

PART 2 PRODUCTS

2.01 PATCHING MATERIALS

- A. New Materials: As specified in product sections; match existing products and work for patching and extending work.
- B. Type and Quality of Existing Products: Determine by inspecting and testing products where necessary, referring to existing work as a standard.
- C. Product Substitution: For any proposed change in materials, submit request for substitution described in Section 01 6000 - Product Requirements.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify that existing site conditions and substrate surfaces are acceptable for subsequent work. Start of work means acceptance of existing conditions.
- B. Verify that existing substrate is capable of structural support or attachment of new work being applied or attached.
- C. Examine and verify specific conditions described in individual specification sections.
- D. Take field measurements before confirming product orders or beginning fabrication, to minimize waste due to over-ordering or misfabrication.
- E. Verify that utility services are available, of the correct characteristics, and in the correct locations.
- F. Prior to Cutting: Examine existing conditions prior to commencing work, including elements subject to damage or movement during cutting and patching. After uncovering existing work, assess conditions affecting performance of work. Beginning of cutting or patching means acceptance of existing conditions.

3.02 PREPARATION

- A. Clean substrate surfaces prior to applying next material or substance.
- B. Seal cracks or openings of substrate prior to applying next material or substance.
- C. Apply manufacturer required or recommended substrate primer, sealer, or conditioner prior to applying any new material or substance in contact or bond.

3.03 PREINSTALLATION MEETINGS

- A. When required in individual specification sections, convene a preinstallation meeting at the site prior to commencing work of the section.
- B. Require attendance of parties directly affecting, or affected by, work of the specific section.
- C. Notify Architect seven days in advance of meeting date.
- D. Prepare agenda and preside at meeting:
 - 1. Review conditions of examination, preparation and installation procedures.
 - 2. Review coordination with related work.

Lakeside Union School District

E. Record minutes and distribute copies within two days after meeting to participants, with two copies to Architect, Owner, participants, and those affected by decisions made.

3.04 LAYING OUT THE WORK

- A. Establish elevations, lines and levels. Locate and lay out by instrumentation and similar appropriate means:
 - 1. Site improvements including pavements; stakes for grading, fill and topsoil placement; utility locations, slopes, and invert elevations.
 - 2. Grid or axis for structures.
- B. Periodically verify layouts by same means.

3.05 GENERAL INSTALLATION REQUIREMENTS

- A. Install products as specified in individual sections, in accordance with manufacturer's instructions and recommendations, and so as to avoid waste due to necessity for replacement.
- B. Make vertical elements plumb and horizontal elements level, unless otherwise indicated.
- C. Install equipment and fittings plumb and level, neatly aligned with adjacent vertical and horizontal lines, unless otherwise indicated.
- D. Make consistent texture on surfaces, with seamless transitions, unless otherwise indicated.
- E. Make neat transitions between different surfaces, maintaining texture and appearance.

3.06 ALTERATIONS

- A. Drawings showing existing construction and utilities are based on casual field observation and existing record documents only.
 - 1. Verify that construction and utility arrangements are as shown.
 - 2. Report discrepancies to Architect before disturbing existing installation.
 - 3. Beginning of alterations work constitutes acceptance of existing conditions.
- B. Remove existing work as indicated and as required to accomplish new work.
 - Remove items indicated on drawings.
 - 2. Relocate items indicated on drawings.
 - 3. Where new surface finishes are to be applied to existing work, perform removals, patch, and prepare existing surfaces as required to receive new finish; remove existing finish if necessary for successful application of new finish.
 - 4. Where new surface finishes are not specified or indicated, patch holes and damaged surfaces to match adjacent finished surfaces as closely as possible.
- C. Services (Including but not limited to irrigation and irrigation): Remove, relocate, and extend existing systems to accommodate new construction.
 - Maintain existing active systems that are to remain in operation; maintain access to equipment and operational components; if necessary, modify installation to allow access or provide access panel.
 - 2. Where existing systems or equipment are not active and Contract Documents require reactivation, put back into operational condition; repair supply, distribution, and equipment as required.
 - Where existing active systems serve occupied facilities but are to be replaced with new services, maintain existing systems in service until new systems are complete and ready for service.
 - a. Disable existing systems only to make switchovers and connections; minimize duration of outages.
 - b. Provide temporary connections as required to maintain existing systems in service.
 - 4. Verify that abandoned services serve only abandoned facilities.
 - 5. Remove abandoned pipe, ducts, conduits, and equipment; remove back to source of supply where possible, otherwise cap stub and tag with identification; patch holes left by removal using materials specified for new construction.
- D. Protect existing work to remain.
 - 1. Prevent movement of structure; provide shoring and bracing if necessary.

Lakeside Union School District

- 2. Perform cutting to accomplish removals neatly and as specified for cutting new work.
- 3. Repair adjacent construction and finishes damaged during removal work.
- Patch as specified for patching new work.
- E. Adapt existing work to fit new work: Make as neat and smooth transition as possible.
- F. Patching: Where the existing surface is not indicated to be refinished, patch to match the surface finish that existed prior to cutting. Where the surface is indicated to be refinished, patch so that the substrate is ready for the new finish.
- G. Refinish existing surfaces as indicated:
- H. Where rooms or spaces are indicated to be refinished, refinish all visible existing surfaces to remain to the specified condition for each material, with a neat transition to adjacent finishes.
- I. If mechanical or electrical work is exposed accidentally during the work, re-cover and refinish to match.
 - 1. Patch as specified for patching new work.
- Clean existing systems and equipment.
- K. Remove demolition debris and abandoned items from alterations areas and dispose of off-site; do not burn or bury.
- Do not begin new construction in alterations areas before demolition is complete.
- M. Comply with all other applicable requirements of this section.

3.07 CUTTING AND PATCHING

- A. Whenever possible, execute the work by methods that avoid cutting or patching.
- B. See Alterations article above for additional requirements.
- C. Perform whatever cutting and patching is necessary to:
 - 1. Complete the work.
 - 2. Fit products together to integrate with other work.
 - 3. Match work that has been cut to adjacent work.
 - 4. Repair areas adjacent to cuts to required condition.
 - 5. Repair new work damaged by subsequent work.
 - 6. Remove samples of installed work for testing when requested.
 - 7. Remove and replace defective and non-conforming work.
- D. Execute cutting and patching including excavation and fill to complete the work, to uncover work in order to install improperly sequenced work, to remove and replace defective or non-conforming work, to remove samples of installed work for testing when requested, to provide openings in the work for penetration of mechanical and electrical work, to execute patching to complement adjacent work, and to fit products together to integrate with other work.
- E. Execute work by methods that avoid damage to other work and that will provide appropriate surfaces to receive patching and finishing. In existing work, minimize damage and restore to original condition.
- F. Employ original installer to perform cutting for weather exposed and moisture resistant elements, and sight exposed surfaces.
- G. Cut rigid materials using masonry saw or core drill. Pneumatic tools not allowed without prior approval.
- H. Restore work with new products in accordance with requirements of Contract Documents.
- I. Patching:
 - Finish patched surfaces to match finish that existed prior to patching. On continuous surfaces, refinish to nearest intersection or natural break. For an assembly, refinish entire unit.
 - 2. Match color, texture, and appearance.
 - 3. Repair patched surfaces that are damaged, lifted, discolored, or showing other imperfections due to patching work. If defects are due to condition of substrate, repair

Lakeside Union School District

substrate prior to repairing finish.

- J. Refinish surfaces to match adjacent finish. For continuous surfaces, refinish to nearest intersection or natural break. For an assembly, refinish entire unit.
- K. Make neat transitions. Patch work to match adjacent work in texture and appearance. Where new work abuts or aligns with existing, perform a smooth and even transition.
- L. Patch or replace surfaces that are damaged, lifted, discolored, or showing other imperfections due to patching work. Repair substrate prior to patching finish. Finish patches to produce uniform finish and texture over entire area. When finish cannot be matched, refinish entire surface to nearest intersections.

3.08 PROGRESS CLEANING

- A. Maintain areas free of waste materials, debris, and rubbish. Maintain site in a clean and orderly condition.
- B. Collect and remove waste materials, debris, and trash/rubbish from site periodically and dispose off-site; do not burn or bury.

3.09 PROTECTION OF INSTALLED WORK

- A. Protect installed work from damage by construction operations.
- B. Provide special protection where specified in individual specification sections.
- C. Provide temporary and removable protection for installed products. Control activity in immediate work area to prevent damage.
- Remove protective coverings when no longer needed; reuse or recycle plastic coverings if possible.

3.10 DEMONSTRATION AND INSTRUCTION

- A. Demonstrate operation and maintenance of products to Owner's personnel two weeks prior to date of Substantial Completion.
- B. Provide a qualified person who is knowledgeable about the Project to perform demonstration and instruction of owner personnel.
- C. Utilize operation and maintenance manuals as basis for instruction. Review contents of manual with Owner's personnel in detail to explain all aspects of operation and maintenance.
- D. Prepare and insert additional data in operations and maintenance manuals when need for additional data becomes apparent during instruction.

3.11 ADJUSTING

A. Adjust operating products and equipment to ensure smooth and unhindered operation.

3.12 FINAL CLEANING

- Execute final cleaning after Substantial Completion but before making final application for payment.
- B. Use cleaning materials that are nonhazardous.
- C. Remove all labels that are not permanent. Do not paint or otherwise cover fire test labels or nameplates on mechanical and electrical equipment.
- Clean equipment and fixtures to a sanitary condition with cleaning materials appropriate to the surface and material being cleaned.
- E. Clean site; sweep paved areas, rake clean landscaped surfaces.
- F. Remove waste, surplus materials, trash/rubbish, and construction facilities from the site; dispose of in legal manner; do not burn or bury.

3.13 MAINTENANCE

- A. Provide service and maintenance of components indicated in specification sections.
- B. Maintenance Period: As indicated in specification sections or, if not indicated, not less than one year from the Date of Substantial Completion or the length of the specified warranty,

Lakeside Union School District

- whichever is longer.
- C. Furnish service and maintenance of components indicated in specification sections for one year from date of Substantial Completion.
- D. Examine system components at a frequency consistent with reliable operation. Clean, adjust, and lubricate as required.
- E. Include systematic examination, adjustment, and lubrication of components. Repair or replace parts whenever required. Use parts produced by the manufacturer of the original component.
- F. Maintenance service shall not be assigned or transferred to any agent or subcontractor without prior written consent of the Owner.

Lakeside Union School District

SECTION 01 7410 CLEANING

PART 1 GENERAL

1.01 **SCOPE**

A. Throughout the construction period, maintain the buildings and site in a standard of cleanliness as described in this Section.

1.02 RELATED WORK

A. In addition to standards described in this Section, comply with requirements for cleaning as described in pertinent other Sections of these Specifications.

1.03 QUALITY ASSURANCE

- A. Conduct daily inspections, and more often if necessary, to verify that requirements for cleanliness are being met.
- B. In addition to the standards described in this Section, comply with pertinent requirements of governmental agencies having jurisdiction.

PART 2 PRODUCTS

2.01 CLEANING MATERIALS AND EQUIPMENT

 Provide required personnel, equipment, and materials needed to maintain the specified standard of cleanliness.

2.02 COMPATIBILITY

A. Use only the cleaning materials and equipment, which are compatible with the surface being cleaned, as recommended by the manufacturer of the material.

PART 3 EXECUTION

3.01 PROGRESS CLEANING

A. General:

- 1. Retain stored items in an orderly arrangement allowing maximum access, not impeding traffic or drainage, and providing required protection of materials.
- 2. Do not allow accumulation of scrap, debris, waste material, and other items not required for construction of this Work.
- 3. At least twice each month, and when requested by the District Representative, completely remove all scrap, debris, and waste material from the job site.
- 4. Provide adequate storage for all items awaiting removal from the job site, observing requirements for fire protection and protection of the ecology.

B. Site:

- 1. Daily, and more often if necessary, inspect the site and pick up all scrap, debris, and waste material. Remove such items to the place designated for their storage.
- Weekly, and more often, if necessary, inspect all arrangements of materials stored on the site. Restack, tidy, or otherwise service arrangements to meet the requirements of subparagraph 3.01 A above.
- 3. Maintain the site in a neat and orderly condition at all times.

3.02 FINAL CLEANING

- A. "Clean", for the purpose of this Article, and except as may be specifically provided otherwise, shall be interpreted as meaning the level of cleanliness generally provided by skilled cleaners using commercial quality building maintenance equipment and materials.
- B. Prior to completion of the Work, remove from the job site all tools, surplus materials, equipment, scrap, debris, and waste. Conduct final progress cleaning as described in Article 3.01 above.

C. Site:

 Unless otherwise specifically directed by the Construction Manager, broom clean paved areas on the site and public paved areas adjacent to the site.

Lakeside Union School District

- 2. Completely remove resultant debris.
- D. Schedule final cleaning as approved by the Architect to enable the District to accept a completely clean Work.

3.03 CLEANING DURING DISTRICT'S OCCUPANCY

A. Should the District occupy the Work or any portion thereof prior to its completion by the Trade Contractor and acceptance by the District, responsibilities for interim and final cleaning shall be as determined by the Architect in accordance with the General Conditions of the Contract.

3.04 TRADE CONTRACTOR RESPONSIBILITY FOR MISUSE OF MATERIALS

A. Should construction materials or debris created by the construction process not be properly stored in a secure area or placed in the proper secured debris containers and such materials are used in acts of vandalism, the contractor shall be responsible to the District and adjacent property Districts for the repair or replacement of items damaged in such vandalism.

Lakeside Union School District

SECTION 01 7700 PROJECT CLOSEOUT

PART 1 GENERAL

1.01 SUMMARY

- A. This Section specifies administrative and procedural requirements for project closeout, including but not limited to:
 - 1. Requirements preparatory to Final Inspection.
 - 2. Final Inspection Procedures.
- B. The work includes performing all operations necessary for and properly incidental to closing out the project and assisting in Owner's final inspection as hereinafter specified. The Conditions of the Contract and the other sections of Division 1 apply to this section as fully as if repeated herein.
- C. Closeout requirements for specific construction activities are included in the appropriate Sections in Divisions 2 through 33.

1.02 RELATED SECTIONS

- A. 01 2000 Price and Payment Procedures; Procedures for preparation and submittal of application for final payment.
- B. 01 7000 Execution Requirements; Starting of systems and equipment and demonstration and instruction of Owner personnel.
- C. 01 7410 Cleaning; Final cleaning requirements.
- D. 01 7800 Closeout Submittals; Project Record Documents, Operation and Maintenance Data and Warranties and Bonds.

1.03 REQUIREMENTS PREPARATORY TO FINAL INSPECTION

- A. All temporary facilities shall be removed from the site as specified in Division 01 5000 sections.
- B. The site shall be thoroughly cleaned as specified in Section 01 7410.
- C. Record (As-built) Drawings shall be completed, signed, and submitted to the Architect as specified in Section 01 7800 Closeout Submittals.
- D. The Material and Equipment maintenance instructions, as specified in the body of the Specifications, shall be submitted to the Architect.
- E. All guarantees and warranties shall be submitted to the Architect as specified in the General Conditions, and Section 01 7800 Closeout Submittals.

1.04 FINAL INSPECTION PROCEDURES

- A. After all requirements preparatory to the final inspection have been completed as herein before specified, the Contractor shall notify the Architect to perform the final inspection. Notice shall be given at least one week of the time the final inspection is to be performed.
- B. On receipt of a request for inspection, the Architect will either proceed with inspection or advise the Contractor of unfulfilled requirements. The Architect will prepare the Certificate of Substantial Completion following inspection, or advise the Contractor by preparing a punch list of construction that must be completed or corrected before the certificate will be issued.
- C. The Contractor or his principal superintendent, authorized to act in behalf of the Contractor, shall accompany the Architect, Consultants and Owner on the final inspection tour, as well as principal subcontractors that the Architect, Consultants or Owner may request to be present.
- D. If the work has been completed in accordance with the Contract Documents, and no further corrective measures are required, the Owner will accept the Project and will include the Notice of Completion on the next Board Agenda for approval by the Board of Trustees.
- E. Failure to include an item on the Punch List does not alter the responsibility of Contractor to complete all Work in accordance with the Contract Documents.

Lakeside Union School District

- F. If the work has not been substantially completed in accordance with the Contract Documents, and numerous corrective measures are still required, the Owner will not accept the Project nor file for the Notice of Completion. Instead, a Punch List will be prepared, based on the information gathered from the final inspection, and the Contractor will be required to complete this work and then call for another final inspection, following the procedures outlined above.
- G. The Architect will repeat inspection when requested and assured that the Work has been substantially completed. If the re-inspection discloses any item not included on the initial Punch List the Contractor shall add these items to the Punch List.
- H. Results of the completed inspection will form the basis of requirements for final acceptance.

1.05 FINAL ACCEPTANCE

- A. PRELIMINARY PROCEDURES:
 - 1. Submit final payment request in compliance with Article 37 of the General Conditions.
 - Submit a certified copy of the Architect's final inspection list of items to be completed or corrected, stating that each item has been completed or otherwise resolved for acceptance, and the list has been endorsed and dated by the Architect.
 - 3. Submit consent of surety to final payment.
 - 4. Submit evidence of final, continuing insurance coverage complying with insurance requirements.
 - Submit evidence that DSA Form 6-C Contractor's Verified Report has been filed with the Division of the State Architect.

Lakeside Union School District

SECTION 01 7800 CLOSEOUT SUBMITTALS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Project Record Documents.
- B. Operation and Maintenance Data.
- C. Warranties and bonds.

1.02 RELATED REQUIREMENTS

- Section 01 3010 Submittals: Submittal procedures, shop drawings, product data, and samples.
- B. Section 01 7000 Execution and Closeout Requirements: Contract closeout procedures.
- C. Individual Product Sections: Specific requirements for operation and maintenance data.
- D. Individual Product Sections: Warranties required for specific products or Work.

1.03 SUBMITTALS

- A. Project Record Documents: Submit documents to Architect with claim for final Application for Payment.
- B. Operation and Maintenance Data:
 - 1. Submit two copies of preliminary draft or proposed formats and outlines of contents before start of Work. Architect will review draft and return one copy with comments.
 - 2. For equipment, or component parts of equipment put into service during construction and operated by Owner, submit completed documents within ten days after acceptance.
 - 3. Submit one copy of completed documents 15 days prior to final inspection. This copy will be reviewed and returned after final inspection, with Architect comments. Revise content of all document sets as required prior to final submission.
 - 4. Submit two sets of revised final documents in final form within 10 days after final inspection.

C. Warranties and Bonds:

- 1. For equipment or component parts of equipment put into service during construction with Owner's permission, submit documents within 10 days after acceptance.
- 2. Make other submittals within 10 days after Date of Substantial Completion, prior to final Application for Payment.
- 3. For items of Work for which acceptance is delayed beyond Date of Substantial Completion, submit within 10 days after acceptance, listing the date of acceptance as the beginning of the warranty period.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.01 PROJECT RECORD DOCUMENTS

- A. Maintain on site one set of the following record documents; record actual revisions to the Work:
 - 1. Drawings.
 - 2. Specifications.
 - 3. Addenda.
 - 4. Change Orders and other modifications to the Contract.
 - 5. Reviewed shop drawings, product data, and samples.
 - 6. Manufacturer's instruction for assembly, installation, and adjusting.
- B. Ensure entries are complete and accurate, enabling future reference by Owner.
- C. Store record documents separate from documents used for construction.
- D. Record information concurrent with construction progress.

Lakeside Union School District

- E. Specifications: Legibly mark and record at each product section description of actual products installed, including the following:
 - 1. Manufacturer's name and product model and number.
 - 2. Product substitutions or alternates utilized.
 - 3. Changes made by Addenda and modifications.
- F. Record Drawings and Shop Drawings: Legibly mark each item to record actual construction including:
 - 1. Prepare a full set of transparencies of contract drawings with all record changes marked.
 - a. The architect will furnish to the contractor transparencies (erasable vellums) of the original contract drawings at the cost of \$10.00 (ten dollars) per sheet.
 - 2. Measured depths of foundations in relation to finish first floor datum.
 - 3. Measured horizontal and vertical locations of underground utilities and appurtenances, referenced to permanent surface improvements.
 - 4. Measured locations of internal utilities and appurtenances concealed in construction, referenced to visible and accessible features of the Work.
 - 5. Field changes of dimension and detail.
 - Details not on original Contract drawings.

3.02 OPERATION AND MAINTENANCE DATA

- A. Source Data: For each product or system, list names, addresses and telephone numbers of Subcontractors and suppliers, including local source of supplies and replacement parts.
- B. Product Data: Mark each sheet to clearly identify specific products and component parts, and data applicable to installation. Delete inapplicable information.
- C. Drawings: Supplement product data to illustrate relations of component parts of equipment and systems, to show control and flow diagrams. Do not use Project Record Documents as maintenance drawings.
- D. Typed Text: As required to supplement product data. Provide logical sequence of instructions for each procedure, incorporating manufacturer's instructions.

3.03 OPERATION AND MAINTENANCE DATA FOR MATERIALS AND FINISHES

- A. For Each Product, Applied Material, and Finish:
 - 1. Product data, with catalog number, size, composition, and color and texture designations.
 - 2. Information for re-ordering custom manufactured products.
- B. Instructions for Care and Maintenance: Manufacturer's recommendations for cleaning agents and methods, precautions against detrimental cleaning agents and methods, and recommended schedule for cleaning and maintenance.
- C. Where additional instructions are required, beyond the manufacturer's standard printed instructions, have instructions prepared by personnel experienced in the operation and maintenance of the specific products.

3.04 OPERATION AND MAINTENANCE DATA FOR EQUIPMENT AND SYSTEMS

- A. For Each Item of Equipment and Each System:
 - 1. Description of unit or system, and component parts.
 - 2. Identify function, normal operating characteristics, and limiting conditions.
 - 3. Include performance curves, with engineering data and tests.
 - 4. Complete nomenclature and model number of replaceable parts.
- B. Where additional instructions are required, beyond the manufacturer's standard printed instructions, have instructions prepared by personnel experienced in the operation and maintenance of the specific products.
- C. Operating Procedures: Include start-up, break-in, and routine normal operating instructions and sequences. Include regulation, control, stopping, shut-down, and emergency instructions. Include summer, winter, and any special operating instructions.

Lakeside Union School District

- D. Maintenance Requirements: Include routine procedures and guide for preventative maintenance and trouble shooting; disassembly, repair, and reassembly instructions; and alignment, adjusting, balancing, and checking instructions.
- E. Provide servicing and lubrication schedule, and list of lubricants required.
- F. Include manufacturer's printed operation and maintenance instructions.
- G. Include sequence of operation by controls manufacturer.
- H. Provide original manufacturer's parts list, illustrations, assembly drawings, and diagrams required for maintenance.
- I. Additional Requirements: As specified in individual product specification sections.

3.05 ASSEMBLY OF OPERATION AND MAINTENANCE MANUALS

- A. Assemble operation and maintenance data into durable manuals for Owner's personnel use, with data arranged in the same sequence as, and identified by, the specification sections.
- B. Where systems involve more than one specification section, provide separate tabbed divider for each system.
- C. Prepare instructions and data by personnel experienced in maintenance and operation of described products.
- D. Prepare data in the form of an instructional manual.
- E. Binders: Commercial quality, 8-1/2 by 11 inch three D side ring binders with durable plastic covers; 2 inch maximum ring size. When multiple binders are used, correlate data into related consistent groupings.
- F. Cover: Identify each binder with typed or printed title OPERATION AND MAINTENANCE INSTRUCTIONS; identify title of Project; identify subject matter of contents.
- G. Project Directory: Title and address of Project; names, addresses, and telephone numbers of Architect, Consultants, Contractor and subcontractors, with names of responsible parties.
- H. Tables of Contents: List every item separated by a divider, using the same identification as on the divider tab; where multiple volumes are required, include all volumes Tables of Contents in each volume, with the current volume clearly identified.
- I. Dividers: Provide tabbed dividers for each separate product and system; identify the contents on the divider tab; immediately following the divider tab include a description of product and major component parts of equipment.
- J. Text: Manufacturer's printed data, or typewritten data on 24 pound paper.
- K. Drawings: Provide with reinforced punched binder tab. Bind in with text; fold larger drawings to size of text pages.
- L. Arrange content by systems under section numbers and sequence of Table of Contents of this Project Manual.
- M. Contents: Prepare a Table of Contents for each volume, with each product or system description identified, in three parts as follows:
 - 1. Part 1: Directory, listing names, addresses, and telephone numbers of Architect, Contractor, Subcontractors, and major equipment suppliers.
 - 2. Part 2: Operation and maintenance instructions, arranged by system and subdivided by specification section. For each category, identify names, addresses, and telephone numbers of Subcontractors and suppliers. Identify the following:
 - a. Significant design criteria.
 - b. List of equipment.
 - c. Parts list for each component.
 - d. Operating instructions.
 - e. Maintenance instructions for equipment and systems.
 - f. Maintenance instructions for special finishes, including recommended cleaning methods and materials, and special precautions identifying detrimental agents.

Lakeside Union School District

- 3. Part 3: Project documents and certificates, including the following:
 - a. Shop drawings and product data.
 - b. Air and water balance reports.
 - c. Certificates.
 - d. Photocopies of warranties and bonds.
- Provide a listing in Table of Contents for design data, with tabbed dividers and space for insertion of data.

3.06 WARRANTIES AND BONDS

- A. Obtain warranties and bonds, executed in duplicate by responsible Subcontractors, suppliers, and manufacturers, within 10 days after completion of the applicable item of work. Except for items put into use with Owner's permission, leave date of beginning of time of warranty until Date of Substantial completion is determined.
- B. Verify that documents are in proper form, contain full information, and are notarized.
- C. Co-execute submittals when required.
- D. Retain warranties and bonds until time specified for submittal.
- E. Manual: Bind in commercial quality 8-1/2 by 11 inch three D side ring binders with durable plastic covers.
- F. Cover: Identify each binder with typed or printed title WARRANTIES AND BONDS, with title of Project; name, address and telephone number of Contractor and equipment supplier; and name of responsible company principal.
- G. Table of Contents: Neatly typed, in the sequence of the Table of Contents of the Project Manual, with each item identified with the number and title of the specification section in which specified, and the name of product or work item.
- H. Separate each warranty or bond with index tab sheets keyed to the Table of Contents listing. Provide full information, using separate typed sheets as necessary. List Subcontractor, supplier, and manufacturer, with name, address, and telephone number of responsible principal.

Lakeside Union School District

SECTION 01 9010 TESTING AND INSPECTION REQUIREMENTS

PART 1 GENERAL

1.01 RELATED SECTIONS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this section.

1.02 QUALITY ASSURANCE

- A. Testing Laboratory Services:
 - 1. The owner will engage an independent testing agency to conduct tests and perform other services required for quality assurance.

1.03 TESTS

A. The Owner will select an independent testing laboratory to conduct the tests. Selection of the material required to be tested shall be by the laboratory or the Owner's representative and not by the contractor.

1.04 TEST REPORTS

A. One copy of all test reports shall be forwarded to the Owner, Architect, Structural Engineer, Inspector of Record (IOR), and Contractor by the testing agency. Such reports shall include all tests made, regardless of whether such tests indicate that the material is satisfactory or unsatisfactory. Samples taken but not tested shall also be reported. Records of special sampling operations as required shall also be reported. The reports shall show that the material or materials were sampled and tested in accordance with the requirements of Title 24 and with the approved specifications. Test reports shall show the specified design strength. They shall also state definitely whether or not the material or materials tested comply with the requirements.

1.05 VERIFICATION OF TEST REPORTS

A. Each testing agency shall submit to the Architect a verified report in duplicate covering all of the tests which are required to be made by that agency during the progress of the project. Such reports shall be furnished each time that work on the project is suspended, covering the tests up to that time, and at the completion of the project, covering all tests.

1.06 INSPECTION BY THE OWNER

The Owner and his representatives shall at all times have access for the purpose of inspection to all parts of the work and to the shops wherein the work is in preparation. The Contractor shall at all times maintain proper facilities and provide safe access for such inspection. The Owner shall have the right to reject materials and workmanship, which are defective, or to require their correction. Rejected workmanship shall be satisfactorily corrected and rejected materials shall be removed from the premises without charge to the Owner. If the Contractor does not correct such rejected work within a reasonable time, fixed by written notice, the Owner may correct same and charge the expense to the Contractor. Should it be considered necessary or advisable by the Owner at any time before final acceptance of the entire work to make an examination of work already completed by removing or tearing out the same, the Contractor shall on request promptly furnish all necessary facilities, labor and materials. If such work is found to be defective in any respect due to fault of the Contractor or his subcontractor. he shall defray all expenses of such examinations and of satisfactory reconstruction. If, however, such work is found to meet the requirements of the Contract, the additional cost of labor and material necessarily involved in the examination and replacement shall be allowed the Contractor.

1.07 INSPECTOR - OWNER'S

A. An Inspector employed by the Owner will be assigned to the work. The work of construction in all stages of progress shall be subject to the personal continuous observation of the Inspector. He/she shall have free access to any or all parts of the work at any time. The Contractor shall furnish the Inspector reasonable facilities for obtaining such information as may be necessary

Lakeside Union School District

to keep him/her fully informed respecting the progress and manner of the work and character of the materials. Inspection of the work shall not relieve the Contractor from any obligation to fulfill this Contract.

PART 2 PRODUCTS - NOT USED PART 3 EXECUTION - NOT USED

Lakeside Union School District

SECTION 02 4100 DEMOLITION

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Selective demolition of built site elements.
- B. Selective demolition of building elements for alteration purposes.
- C. Abandonment and removal of existing utilities and utility structures.

1.02 RELATED REQUIREMENTS

- A. Section 01 1000 Summary: Limitations on Contractor's use of site and premises.
- B. Section 01 5000 Temporary Facilities and Controls: Site fences, security, protective barriers, and waste removal.
- C. Section 01 7000 Execution and Closeout Requirements: Project conditions; protection of bench marks, survey control points, and existing construction to remain; reinstallation of removed products; temporary bracing and shoring.

1.03 REFERENCE STANDARDS

A. 29 CFR 1926 - Safety and Health Regulations for Construction Current Edition.

1.04 SUBMITTALS

- A. See Section 01 3010 Submittals, for submittal procedures.
- B. Project Record Documents: Accurately record actual locations of capped and active utilities and subsurface construction.

1.05 PROJECT CONDITIONS

- A. Minimize production of dust due to demolition operations; do not use water if that will result in ice, flooding, sedimentation of public waterways or storm sewers, or other pollution.
- B. Comply with other requirements specified in Section 01 7000.

PART 2 PRODUCTS

2.01 MATERIALS

A. Fill Material: As specified in Section 31 2323 - Fill.

PART 3 EXECUTION

3.01 SCOPE

- A. Remove paving and site improvements as indicated on drawings and as required to accomplish new work.
- B. Remove existing improvements / construction as indicated on the drawings or as required to complete new work scope, whether specifically identified or not.

3.02 GENERAL PROCEDURES AND PROJECT CONDITIONS

- A. Comply with other requirements specified in Section 01 7000.
- B. Comply with applicable codes and regulations for demolition operations and safety of adjacent structures and the public.
 - 1. Comply with California Building Code Chapter 33 and California Fire Code Chapter 33.
 - 2. Obtain required permits.
 - Take precautions to prevent catastrophic or uncontrolled collapse of structures to be removed; do not allow worker or public access within range of potential collapse of unstable structures.
 - 4. Provide, erect, and maintain temporary barriers and security devices.
 - 5. Use physical barriers to prevent access to areas that could be hazardous to workers or the public.

Lakeside Union School District

- Conduct operations to minimize effects on and interference with adjacent structures and occupants.
- 7. Do not close or obstruct roadways or sidewalks without permit.
- 8. Conduct operations to minimize obstruction of public and private entrances and exits; do not obstruct required exits at any time; protect persons using entrances and exits from removal operations.
- 9. Obtain written permission from owners of adjacent properties when demolition equipment will traverse, infringe upon or limit access to their property.
- C. Do not begin removal until receipt of notification to proceed from Owner.
- D. Do not begin removal until built elements to be salvaged or relocated have been removed.
- E. Protect existing structures and other elements that are not to be removed.
 - Provide bracing and shoring.
 - 2. Prevent movement or settlement of adjacent structures.
 - 3. Stop work immediately if adjacent structures appear to be in danger.
- F. Minimize production of dust due to demolition operations; do not use water if that will result in ice, flooding, sedimentation of public waterways or storm sewers, or other pollution.
- G. If hazardous materials are discovered during removal operations, stop work and notify Architect and Owner; hazardous materials include regulated asbestos containing materials, lead, PCB's, and mercury.
- H. Perform demolition in a manner that maximizes salvage and recycling of materials.
 - 1. Dismantle existing construction and separate materials.
 - 2. Set aside reusable, recyclable, and salvageable materials; store and deliver to collection point or point of reuse.
- Partial Removal of Paving and Curbs: Neatly saw cut at right angle to surface.

3.03 EXISTING UTILITIES

- A. Coordinate work with utility companies; notify before starting work and comply with their requirements; obtain required permits.
- B. Protect existing utilities to remain from damage.
- C. Do not disrupt public utilities without permit from authority having jurisdiction.
- D. Do not close, shut off, or disrupt existing life safety systems that are in use without at least 7 days prior written notification to Owner.
- E. Do not close, shut off, or disrupt existing utility branches or take-offs that are in use without at least 3 days prior written notification to Owner.
- F. Locate and mark utilities to remain; mark using highly visible tags or flags, with identification of utility type; protect from damage due to subsequent construction, using substantial barricades if necessary.
- G. Remove exposed piping, valves, meters, equipment, supports, and foundations of disconnected and abandoned utilities.

3.04 SELECTIVE DEMOLITION FOR ALTERATIONS

- A. Drawings showing existing construction and utilities are based on casual field observation and existing record documents only.
 - 1. Contractor shall be responsible and shall pay for all services required for locating all existing underground utilities within the area of work.
 - 2. Verify that construction and utility arrangements are as shown.
- B. Separate areas in which demolition is being conducted from other areas that are still occupied.
 - 1. Provide, erect, and maintain temporary dustproof partitions of construction as required .
- C. Maintain weatherproof exterior building enclosure except for interruptions required for replacement or modifications; take care to prevent water and humidity damage.
- D. Remove existing work as indicated and as required to accomplish new work.

Lakeside Union School District

- E. Services (Including but not limited to HVAC, Plumbing, Electrical, and Telecommunications): Remove existing systems and equipment as indicated.
 - 1. Maintain existing active systems that are to remain in operation; maintain access to equipment and operational components.
 - 2. Verify that abandoned services serve only abandoned facilities before removal.
 - 3. Remove abandoned pipe, ducts, conduits, and equipment, including those above accessible ceilings; remove back to source of supply where possible, otherwise cap stub and tag with identification.
- F. Protect existing work to remain.
 - 1. Repair adjacent construction and finishes damaged during removal work.

3.05 DEBRIS AND WASTE REMOVAL

- A. Remove debris, junk, and trash from site.
- B. Remove from site all materials not to be reused on site; do not burn or bury.
- C. Leave site in clean condition, ready for subsequent work.
- D. Clean up spillage and wind-blown debris from public and private lands.

Lakeside Union School District

SECTION 03 3000 CAST-IN-PLACE CONCRETE

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Concrete formwork.
- B. Patching of concrete slabs on grade.
- C. Concrete curing.

1.02 REFERENCE STANDARDS

- A. Title 24, Part 2, C.C.R., 2022 California Building Code (2021 I.B.C. w/ California Amendments); Chapter 19A.
- B. ACI 211.1 Selecting Proportions for Normal-Density and High Density-Concrete Guide 2022.
- C. ACI 301 Specifications for Concrete Construction 2020.
- D. ACI 302.1R Guide to Concrete Floor and Slab Construction 2015.
- E. ACI 304R Guide for Measuring, Mixing, Transporting, and Placing Concrete 2000 (Reapproved 2009).
- F. ACI 305R Guide to Hot Weather Concreting 2020.
- G. ACI 306R Guide to Cold Weather Concreting 2016.
- H. ACI 308R Guide to External Curing of Concrete 2016.
- I. ACI 318 Building Code Requirements for Structural Concrete and Commentary; 2014.
- J. ASTM A185/A185M Standard Specification for Steel Welded Wire Reinforcement, Plain, for Concrete; 2007.
- K. ASTM C33/C33M Standard Specification for Concrete Aggregates 2018.
- ASTM C39/C39M Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens 2021.
- M. ASTM C94/C94M Standard Specification for Ready-Mixed Concrete 2022a.
- N. ASTM C150/C150M Standard Specification for Portland Cement 2022.
- O. ASTM C260/C260M Standard Specification for Air-Entraining Admixtures for Concrete 2010a (Reapproved 2016).
- P. ASTM C309 Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete 2019.
- Q. ASTM C330/C330M Standard Specification for Lightweight Aggregates for Structural Concrete 2017a.
- R. ASTM C494/C494M Standard Specification for Chemical Admixtures for Concrete 2019, with Editorial Revision (2022).
- S. ASTM C618 Standard Specification for Coal Ash and Raw or Calcined Natural Pozzolan for Use in Concrete 2023, with Editorial Revision.
- T. ASTM C1107/C1107M Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Nonshrink) 2020.
- U. ASTM D1751 Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types) 2018.
- V. ASTM E1745 Standard Specification for Plastic Water Vapor Retarders Used in Contact with Soil or Granular Fill Under Concrete Slabs 2017.

1.03 SUBMITTALS

A. See Section 01 3010 - Submittals, for submittal procedures.

Lakeside Union School District

- B. Quality Control Submittals: Submit the following information related to quality assurance requirements specified:
 - Design data: Submit proposed mix designs and test data before concrete operations begin. Identify for each mix submitted the method by which proportions have been selected.
 - a. For mix designs based on field experience, include individual strength test results, standard deviation, and required average compressive strength f(cr) calculations. Provide 30 test results from the previous 12 months from the date of the concrete pour.
 - b. Indicate quantity of each ingredient per cubic yard of concrete.
 - c. Indicate type and quantity of admixtures proposed or required.
 - 2. Certifications: Submit affidavits from an independent testing agency certifying that all materials furnished under this section conform to specifications.
 - 3. Delivery tickets: Submit copies of delivery tickets complying with ASTM C 94 for each load of concrete delivered to site.
 - a. Include on the tickets the additional information specified in the ASTM document.
 - 4. Hot weather concreting: Submit description of planned protective measures.
- C. Project Record Documents: Accurately record actual locations of embedded utilities and components that will be concealed from view upon completion of concrete work.

1.04 QUALITY ASSURANCE

- A. Perform work of this section in accordance with ACI 301 and ACI 318.
- B. Acquire cement from same source and aggregate from same source for entire project.
- C. Follow recommendations of ACI 305R when concreting during hot weather.
 - 1. Well in advance of proposed concreting operations, advise the architect of planned protective measures including but not limited to cooling of materials before or during mixing, placement during evening to dawn hours, fogging during finishing and curing, shading, and windbreaks.
- D. Follow recommendations of ACI 306R when concreting during cold weather.

PART 2 PRODUCTS

2.01 FORMWORK

- A. Form Materials: Contractor's choice of standard products with sufficient strength to withstand hydrostatic head without distortion in excess of permitted tolerances.
 - 1. Form Facing for Exposed Finish Concrete: Contractor's choice of materials that will provide smooth, stain-free final appearance.
 - 2. Form Coating: Release agent that will not adversely affect concrete or interfere with application of coatings.
 - Form Ties: Cone snap type that will leave no metal within 1-1/2 inches of concrete surface.

2.02 REINFORCEMENT

- A. Reinforcing Steel: ASTM A615/A615M, Grade 60 (60,000 psi).
 - 1. Type: Deformed billet-steel bars.
 - 2. Finish: Unfinished, unless otherwise indicated.

2.03 CONCRETE MATERIALS

- A. Cement: ASTM C150/C150M, Type V Sulfate Resistant Portland type.
 - 1. Acquire all cement for entire project from same source.
- B. Fine and Coarse Aggregates: ASTM C 33.
 - Acquire all aggregates for entire project from same source.
- C. Water: Clean and not detrimental to concrete.

Lakeside Union School District

2.04 ADMIXTURES

- A. Do not use chemicals that will result in soluble chloride ions in excess of 0.1 percent by weight of cement.
- B. Air Entrainment Admixture: ASTM C260/C260M.
- C. Water Reducing Admixture: ASTM C494/C494M Type A.

2.05 ACCESSORY MATERIALS

- A. Underslab Vapor Retarder: Multi-layer, fabric-, cord-, grid-, or aluminum-reinforced polyethylene or equivalent, complying with ASTM E1745, Class A; stated by manufacturer as suitable for installation in contact with soil or granular fill under concrete slabs. The use of single ply polyethylene is prohibited.
 - 1. Installation: Comply with ASTM E1643.
 - 2. Accessory Products: Vapor retarder manufacturer's recommended tape, adhesive, mastic, prefabricated boots, etc., for sealing seams and penetrations.
- B. Chemical Hardener: Fluosilicate solution designed for densification of cured concrete slabs.
- C. Non-Shrink Cementitious Grout: Premixed compound consisting of non-metallic aggregate, cement, water reducing and plasticizing agents.
- D. Liquid Curing Compound: ASTM C 309, Type 1, clear or translucent.
 - 1. Non-yellowing formulation where subject to ultraviolet light.
 - 2. Where compounds are proposed for use on surfaces to which finishes, coatings, or coverings subsequently will be applied, compound shall possess demonstrated compatibility with finish, coating, or covering, and use shall be subject to approval of the architect.

2.06 BONDING AND JOINTING PRODUCTS

- A. Slab Isolation Joint Filler: 1/2 inch thick, height equal to slab thickness, with removable top section that will form 1/2 inch deep sealant pocket after removal.
- B. Joint Filler: Nonextruding, resilient asphalt impregnated fiberboard or felt, complying with ASTM D 1751, 1/4 inch thick and 4 inches deep; tongue and groove profile.

2 07 CURING MATERIALS

A. Curing Compound, Naturally Dissipating: Clear, water-based, liquid membrane-forming compound; complying with ASTM C309.

2.08 CONCRETE MIX DESIGN

- A. Proportioning Normal Weight Concrete: Comply with ACI 211.1 recommendations.
- B. Proportioning Normal Weight Concrete: Comply with the 2022 California Building Code, Chapter 19A and ACI 318.
- C. Admixtures: Add acceptable admixtures as recommended in ACI 211.1 and at rates recommended or required by manufacturer.
- D. Normal Weight Concrete:
 - 1. Compressive Strength, when tested in accordance with ASTM C39/C39M at 28 days: 3,000 pounds per square inch.
 - 2. Maximum water-cement ratio by weight: 0.45.
 - 3. Maximum Slump: 3 inches.
 - 4. Maximum Aggregate Size: 3/4 inch.

E. Admixtures:

- 1. Air-entraining admixture: Add at rate to achieve specified air content.
 - a. Do not use in slabs-on-grade scheduled to receive topping, unless manufacturer of topping recommends use over air-entrained concrete.
- 2. Water-reducing admixture: Add as required for placement and workability.
- 3. Water-reducing and retarding admixture: Add as required in concrete mixes to be placed at ambient temperatures above 90 degrees F.

Lakeside Union School District

- 4. Do not use admixtures not specified or approved.
- F. Design mixes to meet or exceed each requirement specified. Where more than one criterion is specified, the most stringent shall apply. For example, a minimum cement content or maximum water-cement ratio might result in strengths greater than the minimum specified; likewise, a greater cement content or lower water-cement ratio may be required in order to achieve the required strength.

2.09 CONTROL OF MIX IN THE FIELD

- A. Slump: A tolerance of up to 1 inch above that specified will be permitted for 1 batch in 5 consecutive batches tested. Concrete of lower slump than that specified may be used, provided proper placing and consolidation is obtained.
 - 1. If slump upon arrival at the site is lower than 1 inch below the value specified, one addition of water in accordance with ASTM C 94 will be permitted to bring slump within tolerance, provided that:
 - a. A positive means is available to measure the amount of water added at the site.
 - b. The specified (or approved) maximum water-cement ratio is not exceeded.
 - c. Not more than 45 minutes have elapsed since batching.
- B. Total Air Content: A tolerance of plus or minus 1-1/2 percent of that specified will be allowed for field measurements.
 - 1. Do not use batches that exceed tolerances.

2.10 MIXING

- A. Transit Mixers: Comply with ASTM C94/C94M.
 - At ambient temperatures of 85 to 90 degrees F, reduce mixing and delivery time to 75 minutes.
 - 2. At ambient temperatures above 90 degrees F, reduce mixing and delivery time to 60 minutes.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify lines, levels, and dimensions before proceeding with work of this section.

3.02 PREPARATION

- A. Formwork: Comply with requirements of ACI 301. Design and fabricate forms to support all applied loads until concrete is cured, and for easy removal without damage to concrete.
- B. Verify that forms are clean and free of rust before applying release agent.
- Coordinate placement of embedded items with erection of concrete formwork and placement of form accessories.
- D. Interior Slabs on Grade: Install vapor retarder under interior slabs on grade. Lap joints minimum 6 inches. Seal joints, seams and penetrations watertight with manufacturer's recommended products and follow manufacturer's written instructions. Repair damaged vapor retarder before covering.

3.03 JOINT CONSTRUCTION

- A. Construction Joints: Locate and install construction joints as indicated on drawings. If construction joints are not indicated, locate in manner which will not impair strength and will have least impact on appearance, as acceptable to the architect.
 - 1. Keyways: Provide keyways not less than 1-1/2 inches deep.
 - 2. Reinforcement: Continue reinforcement across and perpendicular to construction joints, unless details specifically indicate otherwise.
- B. Expansion Joints: Construct expansion joints where indicated. Install expansion joint filler to full depth of concrete. Recess edge of filler to depth indicated to receive joint sealant (and backer rod where necessary) specified in Division 7.
- C. Control Joints: Construct contraction joints in slabs poured on grade to form panels of sizes indicated on drawings, but not more than 14 feet apart in either direction.

Lakeside Union School District

1. Saw cuts: Form control joints by means of saw cuts one-fourth the depth of the slab, performed as soon as possible after slab finishing without dislodging aggregate.

3.04 INSTALLATION OF EMBEDDED ITEMS

- A. General: Set anchorage devices and other items required for other work connected to or supported by cast-in-place concrete, using templates, setting drawings, and instructions from suppliers of items to be embedded.
 - 1. Edge Forms and Screeds: Set edge forms and intermediate screeds as necessary to achieve final elevations indicated for finished slab surfaces.

3.05 PLACING CONCRETE

- A. Place concrete in accordance with ACI 304R.
- B. Place concrete for floor slabs in accordance with ACI 302.1R.
- C. Preparation: Provide materials necessary to ensure adequate protection of concrete during inclement weather before beginning installation of concrete.
- D. Inspection: Before beginning concrete placement, inspect formwork, reinforcing steel, and items to be embedded, verifying that all such work has been completed.
 - 1. Wood forms: Moisten immediately before placing concrete in locations where form coatings are not used.
- E. Placement General: Comply with requirements of ACI 304 and as follows:
 - 1. Schedule continuous placement of concrete to prevent the formation of cold joints.
 - 2. Provide construction joints if concrete for a particular element or component cannot be placed in a continuous operation.
 - 3. Deposit concrete as close as possible to its final location, to avoid segregation.
- F. Placement in Forms: Limit horizontal layers to depths which can be properly consolidated, but in no event greater than 24 inches.
 - 1. Consolidate concrete by means of mechanical vibrators, inserted vertically in freshly placed concrete in a systematic pattern at close intervals. Penetrate previously placed concrete to ensure that separate concrete layers are knitted together.
 - 2. Vibrate concrete sufficiently to achieve consistent consolidation without segregation of coarse aggregates.
 - 3. Do not use vibrators to move concrete laterally.
- G. Hot Weather Placement: Comply with recommendations of ACI 305R when ambient temperature before, during, or after concrete placement is expected to exceed 90 degrees F or when combinations of high air temperature, low relative humidity, and wind speed are such that the rate of evaporation from freshly poured concrete would otherwise exceed 0.2 pounds per square foot per hour.
 - 1. Do not add water to approved concrete mixes under hot weather conditions.
 - 2. Provide mixing water at lowest feasible temperature, and provide adequate protection of poured concrete to reduce rate of evaporation.
 - 3. Use fog nozzle to cool formwork and reinforcing steel immediately prior to placing concrete.
- H. Ensure reinforcement, inserts, embedded parts, and formed construction joint devices will not be disturbed during concrete placement.
- I. Finish floors level and flat, unless otherwise indicated, within the tolerances specified below.

3.06 SLAB JOINTING

- A. Locate joints as indicated on drawings.
- B. Anchor joint fillers and devices to prevent movement during concrete placement.
- C. Isolation Joints: Use preformed joint filler with removable top section for joint sealant, total height equal to thickness of slab, set flush with top of slab.

3.07 FLOOR FLATNESS AND LEVELNESS TOLERANCES

A. Maximum Variation of Surface Flatness:

Lakeside Union School District

- 1. Exposed Concrete Floors: 1/4 inch in 10 feet.
- 2. Under Seamless Resilient Flooring: 1/4 inch in 10 feet.
- 3. Under Carpeting: 1/4 inch in 10 feet.
- B. Correct the slab surface if tolerances are less than specified.
- C. Correct defects by grinding or by removal and replacement of the defective work. Areas requiring corrective work will be identified. Re-measure corrected areas by the same process.

3.08 CONCRETE FINISHING

- A. Repair surface defects, including tie holes, immediately after removing formwork.
 - 1. Remove honeycombed areas and other defective concrete down to sound concrete, cutting perpendicular to surface or slightly undercutting. Dampen patch location and area immediately surrounding it prior to applying bonding compound or patching mortar.
 - 2. Before bonding compound has dried, apply patching mixture matching original concrete in materials and mix except for omission of coarse aggregate, and using a blend of white and normal portland cement as necessary to achieve color match. Consolidate thoroughly and strike off slightly higher than surrounding surface.
- B. Unexposed Form Finish: Rub down or chip off fins or other raised areas 1/4 inch or more in height.
- C. Exposed Form Finish: Rub down or chip off and smooth fins or other raised areas 1/4 inch or more in height. Provide finish as follows:
 - 1. Smooth Rubbed Finish: Wet concrete and rub with carborundum brick or other abrasive, not more than 24 hours after form removal.
- D. CONCRETE SLABS: Finish to requirements of ACI 302.1R, and as follows:
 - 1. Do not directly apply water to slab surface or dust with cement.
 - 2. Use hand or powered equipment only as recommended in ACI 302.1R.
 - 3. Screeding: Strikeoff to required grade and within surface tolerances indicated. Verify conformance to surface tolerances. Correct deficiencies while concrete is still plastic.
 - 4. Bull Floating: Immediately following screeding, bull float or darby before bleed water appears to eliminate ridges, fill in voids, and embed coarse aggregate. Recheck and correct surface tolerances.
 - 5. Do not perform subsequent finishing until excess moisture or bleed water has disappeared and concrete will support either foot pressure with less than 1/4-inch indentation or weight of power floats without damaging flatness.
 - 6. Final floating: Float to embed coarse aggregate, to eliminate ridges, to compact concrete, to consolidate mortar at surface, and to achieve uniform, sandy texture. Recheck and correct surface tolerances.
 - 7. Troweling: Trowel immediately following final floating. Apply first troweling with power trowel except in confined areas, and apply subsequent trowelings with hand trowels. Wait between trowelings to allow concrete to harden. Do not overtrowel. Begin final troweling when surface produces a ringing sound as trowel is moved over it. Consolidate concrete surface by final troweling operation. Completed surface shall be free of trowel marks, uniform in texture and appearance, and within surface tolerance specified.
 - Grind smooth surface defects which would telegraph through final floor covering system.
 - b. Surfaces to Receive Thick Floor Coverings: "Wood float" as described in ACI 302.1R; thick floor coverings include quarry tile, ceramic tile, and terrazzo with full bed setting system.
 - c. Surfaces to Receive Thin Floor Coverings: "Steel trowel" as described in ACI 302.1R; thin floor coverings include carpeting, resilient flooring, seamless flooring, thin set guarry tile, and thin set ceramic tile.
 - 8. In areas with floor drains, maintain floor elevation at walls; pitch surfaces uniformly to drains at 2% maximum.
 - Slab Surface Tolerances:
 - Achieve flat, level planes except where grades are indicated. Slope uniformly to drains.

Lakeside Union School District

- b. Floated finishes: Depressions between high spots shall not exceed 1/4 inch under a 10-foot straightedge.
- c. Troweled finishes: Achieve level surface plane so that depressions between high spots do not exceed the following dimension, using a 10-foot straightedge:
 - 1) 1/4 inch.
- 10. Repair of Slab Surfaces: Test slab surfaces for smoothness and to verify surface plane to tolerance specified. Repair defects as follows:
 - a. High areas: Correct by grinding after concrete has cured for not less than 14 days.
 - b. Low areas: Immediately after completion of surface finishing operations, cut out low areas and replace with fresh concrete. Finish repaired areas to blend with adjacent concrete. Proprietary patching compounds may be used when approved by the architect.
 - c. Crazed or cracked areas: Cut out defective areas, except random cracks and single holes not exceeding 1 inch in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts. Dampen exposed concrete and apply bonding compound. Mix, place, compact, and finish patching concrete to match adjacent concrete.
 - d. Isolated cracks and holes: Groove top of cracks and cut out holes not over 1 inch in diameter. Dampen cleaned concrete surfaces and apply bonding compound; place dry pack or proprietary repair compound acceptable to architect while bonding compound is still active:
 - 1) Dry-pack mix: One part portland cement to 2-1/2 parts fine aggregate and enough water as required for handling and placing.
 - 2) Install patching mixture and consolidate thoroughly, striking off level with and matching surrounding surface. Do not allow patched areas to dry out prematurely.

3.09 CURING AND PROTECTION

- A. Comply with requirements of ACI 308R. Immediately after placement, protect concrete from premature drying, excessively hot or cold temperatures, and mechanical injury.
- B. Maintain concrete with minimal moisture loss at relatively constant temperature for period necessary for hydration of cement and hardening of concrete.
- C. Surfaces Not in Contact with Forms:
 - Initial Curing: Start as soon as free water has disappeared and before surface is dry.
 Keep continuously moist for not less than three days by water ponding, water-saturated sand, water-fog spray, or saturated burlap.
 - 2. Final Curing: Begin after initial curing but before surface is dry.
 - a. Curing Compound: Apply in two coats at right angles, using application rate recommended by manufacturer.

3.10 FIELD QUALITY CONTROL

- A. An independent testing agency will perform field quality control tests, as specified in Section 01 4000 Quality Requirements.
- B. Provide free access to concrete operations at project site and cooperate with appointed firm.
- C. Composite Sampling, and Making and Curing of Specimens: ASTM C 172 and ASTM C 31.
 - 1. Take samples at point of discharge.
 - For pumped concrete, perform sampling and testing at the frequencies specified herein at point of delivery to pump, and perform additional sampling and testing at the same frequency at discharge from line. Results obtained at discharge from line shall be used for acceptance of concrete.
- D. Slump: ASTM C 143. One test per strength test and additional tests if concrete consistency changes.
 - 1. Modify sampling to comply with ASTM C 94.
- E. Air Content of Normal Weight Concrete: ASTM C 173 or ASTM C 231. One test per strength test performed on air-entrained concrete.

Lakeside Union School District

- F. Concrete Temperature:
 - 1. Test hourly when air temperature is 90 degrees F or above.
 - 2. Test each time a set of strength test specimens is made.
- G. Compressive Strength Tests: ASTM C 39 and Section 1903A, 2019 C.B.C.
 - 1. Compression test specimens: Mold and cure one set of 4 standard cylinders for each compressive strength test required.
 - 2. Testing for acceptance of potential strength of as-delivered concrete:
 - a. Obtain samples on a statistically sound, random basis.
 - b. Minimum frequency:
 - One set per 50 cubic yards or fraction thereof for each day's pour of each concrete class.
 - 2) One set per 2000 square feet of slab or wall area or fraction thereof for each day's pour of each concrete class.
 - When the above testing frequency would provide fewer than 5 strength tests for a given class of concrete during the project, conduct testing from not less than 5 randomly selected batches, or from each batch if fewer than 5.
 - c. Test one specimen per set at 7 days for information unless an earlier age is required.
 - d. Test 2 specimens per set for acceptance of strength potential; test at 28 days unless other age is specified. The test result shall be the average of the two specimens. If one specimen shows evidence of improper sampling, molding, or testing, the test result shall be the result of the remaining specimen; if both show such evidence, discard the test result and inform the architect.
 - e. Retain one specimen from each set for later testing, if required.
 - f. Strength potential of as-delivered concrete will be considered acceptable if the following criteria is met:
 - 1) Minimum of all sets of 3 consecutive strength test results equals or exceeds specified compressive strength f'(c).
 - g. Evaluate construction and curing procedures and implement corrective action when strength results for field-cured specimens are less than 85 percent of test values for companion laboratory-cured specimens.
 - 3. Removal of forms or supports: Mold additional specimens and field-cure with concrete represented; test to determine strength of concrete at proposed time of form or support removal.
- H. Take one additional test cylinder during cold weather concreting, cured on job site under same conditions as concrete it represents.

3.11 CONCRETE SURFACE REPAIRS:

- A. Patching Defective Areas: Repair and patch defective areas with cement mortar immediately after removal of forms, when acceptable to Architect.
- B. Cut out honeycomb, rock pockets, voids over 1/4" in any dimension, and holes left by tie rods and bolts, down to solid concrete but, in no case to a depth of less than 1". Make edges of cuts perpendicular to the concrete surface. Thoroughly clean, dampen with water, and brush?coat the area to be patched with specified bonding agent. Place patching mortar after bonding compound has dried.
- C. For exposed-to-view surfaces, blend white portland cement and standard portland cement so that, when dry, patching mortar will match color surrounding. Provide test areas at inconspicuous location to verify mixture and color match before proceeding with patching. Compact mortar in place and strike?off slightly higher than surrounding surface.
- D. Repair of Formed Surfaces: Remove and replace concrete having defective surfaces if defects cannot be repaired to satisfaction of Architect. Surface defects, as such, include color and texture irregularities, cracks, spalls, air bubbles, honeycomb, rock pockets; fins and other projections on surface; and stains and other discolorations that cannot be removed by cleaning. Flush out form tie holes, fill with dry pack mortar, or precast cement cone plugs secured in place with bonding agent.

Lakeside Union School District

- E. Repair concealed formed surfaces, where possible, that contain defects that affect the durability of concrete. If defects cannot be repaired, remove and replace concrete.
- F. Repair of Unformed Surfaces: Test unformed surfaces, such as monolithic slabs, for smoothness and verify surface plane to tolerances specified for each surface and finish. Correct low and high areas as herein specified. Test unformed surfaces sloped to drain for trueness of slope, in addition to smoothness using a template having required slope.
- G. Repair finished unformed surfaces that contain defects which affect durability of concrete. Surface defects, as such, include crazing, cracks in excess of 0.01" wide or which penetrate to reinforcement or completely through non?reinforced sections regardless of width, spalling, pop?outs, honeycomb, rock pockets, and other objectionable conditions.
- H. Correct high areas in unformed surfaces by grinding, after concrete has cured at least 14 days.
- Correct low areas in unformed surfaces during or immediately after completion of surface finishing operations by cutting out low areas and replacing with fresh concrete. Finish repaired areas to blend into adjacent concrete. Proprietary patching compounds may be used when acceptable to Architect.
- J. Repair defective areas, except random cracks and single holes not exceeding 1" diameter, by cutting out and replacing with fresh concrete. Remove defective areas to sound concrete with clean square cuts and expose reinforcing steel with at least 3/4" clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding compound. Mix patching concrete of same materials to provide concrete of same type or class as original concrete. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete

3.12 DEFECTIVE CONCRETE

- A. Test Results: The testing agency shall report test results in writing to Architect and Contractor within 24 hours of test.
 - 1. Test reports shall contain the following data:
 - a. Project name, number, and other identification.
 - b. Name of concrete testing agency.
 - c. Date and time of sampling.
 - d. Concrete type and class.
 - e. Location of concrete batch in the completed work.
 - f. All information required by respective ASTM test methods.
- B. Defective Concrete: Concrete not conforming to required lines, details, dimensions, tolerances or specified requirements.
- C. Repair or replacement of defective concrete will be determined by the Architect. The cost of additional testing shall be borne by Contractor when defective concrete is identified.
- D. Nondestructive testing devices such as impact hammer or sonoscope may be used at architect's option for assistance in determining probable concrete strength at various locations or for selecting areas to be cored, but such tests shall not be the sole basis for acceptance or rejection.
- E. The testing agency shall make additional tests of in-place concrete as directed by the architect when test results indicate that specified strength and other concrete characteristics have not been attained
 - 1. Testing agency may conduct tests of cored cylinders complying with ASTM C 42 and 2605(g), or tests as directed.
 - 2. Cost of additional testing shall be borne by the contractor when unacceptable concrete has been verified.

3.13 PROTECTION

A. Do not permit traffic over unprotected concrete floor surface until fully cured.

Lakeside Union School District

SECTION 03 3511 CONCRETE FLOOR FINISHES

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Refinishing of existing exposed concrete floor slab.
- B. Surface treatments for concrete floors and slabs.
- C. Polished concrete.

1.02 ADMINISTRATIVE REQUIREMENTS

A. Coordinate the work with concrete floor placement and concrete floor curing.

1.03 SUBMITTALS

A. Product Data: Manufacturer's published data on each finishing product, including information on compatibility of different products and limitations.

1.04 MOCK-UP

- A. For coatings, construct mock-up area under conditions similar to those that will exist during application, with coatings applied.
- B. Mock-Up Size: 10 feet square.
- C. Locate where directed.

1.05 DELIVERY, STORAGE, AND HANDLING

A. Deliver materials in manufacturer's sealed packaging, including application instructions.

PART 2 PRODUCTS

2.01 CONCRETE FLOOR FINISH APPLICATIONS

- A. Unless otherwise indicated, all existing exposed concrete floors in the Kitchen are to be finished using polished concrete finish.
- B. Liquid Densifier/Hardener/Sealer: Consolideck LS
- C. Gloss Clear Sealer: Consolideck Guard

2.02 COATINGS

- A. Gloss Clear Sealer: Transparent, non-yellowing, water- or solvent-based coating.
 - 1. Composition: Acrylic polymer-based.

2.03 POLISHED CONCRETE SYSTEM

- A. Polished Concrete System: Materials, equipment, and procedures designed and furnished by a single manufacturer to produce dense polished concrete of the specified sheen.
 - 1. Acceptable Systems:
 - a. PROSOCO, Inc; Consolideck Polished Concrete System: www.prosoco.com/consolideck

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify that floor surfaces are acceptable to receive the work of this section.
- B. Verify that flaws in concrete have been patched and joints filled with methods and materials suitable for further finishes.

3.02 GENERAL

A. Apply materials in accordance with manufacturer's instructions.

3.03 COATING APPLICATION

A. Verify that surface is free of previous coatings, sealers, curing compounds, water repellents, laitance, efflorescence, fats, oils, grease, wax, soluble salts, residues from cleaning agents,

Lakeside Union School District

- and other impediments to adhesion. Sand / grind existing concrete floor surface to prepare for polishing and application of sealer.
- B. Verify that water vapor emission from concrete and relative humidity in concrete are within limits established by coating manufacturer.
- C. Protect adjacent non-coated areas from drips, overflow, and overspray; immediately remove excess material.
- D. Apply coatings in accordance with manufacturer's instructions, matching approved mock-ups for color, special effects, sealing and workmanship.
- E. Finish floor surface shall be stable, firm, and slip resistant and shall comply with CBC Sections 11B-302 and 11B-403.

3.04 CONCRETE POLISHING

- A. Execute using materials, equipment, and procedures specified by manufacturer, using manufacturer approved installer.
 - 1. Final Polished Sheen: Semigloss finish; other sheens are included as comparison to illustrate required sheen; final sheen is before addition of any sealer or coating, regardless of whether that is also specified or not.
 - 2. Semi-Gloss Finish: Reflecting overhead and side images from 35 to 45 feet away.

Lakeside Union School District

SECTION 06 1000 ROUGH CARPENTRY

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Structural dimension lumber framing.
- B. Non-structural dimension lumber framing.
- C. Rough opening framing for doors, windows, and roof openings.
- D. Preservative treated wood materials.
- E. Fire retardant treated wood materials.
- F. Miscellaneous framing and sheathing.
- G. Concealed wood blocking, nailers, and supports.
- H. Refer to Structural Drawings for structural lumber framing requirements.

1.02 REFERENCE STANDARDS

- A. 2022 California Building Code, Chapter 23.
- B. ASTM A153/A153M Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware 2016a.
- C. AWPA U1 Use Category System: User Specification for Treated Wood 2022.
- D. PS 1 Structural Plywood 2019.
- E. PS 20 American Softwood Lumber Standard 2021.
- F. WCLIB (GR) Standard Grading Rules for West Coast Lumber No. 17 2018.
- G. WWPA G-5 Western Lumber Grading Rules 2021.

1.03 QUALITY ASSURANCE

- A. Lumber: Comply with PS 20 and approved grading rules and inspection agencies.
 - 1. Acceptable Lumber Inspection Agencies: WCLB and WWPA.
- B. Exposed-to-View Rough Carpentry: Submit manufacturer's certificate that products meet or exceed specified requirements, in lieu of grade stamping.

1.04 DELIVERY, STORAGE, AND HANDLING

A. General: Cover wood products to protect against moisture. Support stacked products to prevent deformation and to allow air circulation.

PART 2 PRODUCTS

2.01 GENERAL REQUIREMENTS

- A. Dimension Lumber: Comply with PS 20 and requirements of specified grading agencies.
 - 1. Species: Douglas Fir-Larch, unless otherwise indicated.
 - If no species is specified, provide any species graded by the agency specified; if no grading agency is specified, provide lumber graded by any grading agency meeting the specified requirements.
 - 3. Grading Agency: Any grading agency whose rules are approved by the Board of Review, American Lumber Standard Committee (www.alsc.org) and who provides grading service for the species and grade specified; provide lumber stamped with grade mark unless otherwise indicated.
- B. Lumber fabricated from old growth timber is not permitted.

2.02 DIMENSION LUMBER FOR CONCEALED APPLICATIONS

- A. Grading Agency: Western Wood Products Association (WWPA).
- B. Sizes: Nominal sizes as indicated on drawings, S4S.
- C. Moisture Content: S-dry or MC19.

Lakeside Union School District

- D. Stud Framing (2 by 2 through 2 by 6):
 - 1. Species: Douglas Fir-Larch.
 - 2. Grade: No. 2.
- E. Header Framing (2 by 6 through 4 by 16):
 - 1. Species: Douglas Fir-Larch.
 - 2. Grade: No. 1 & Btr.
- F. Miscellaneous Framing, Blocking, Nailers, Grounds, and Furring:
 - 1. Lumber: S4S, No. 2 or Standard Grade.
- G. Miscellaneous Blocking, Furring, and Nailers:
 - 1. Lumber: S4S, No. 2 or Standard Grade.
 - 2. Species: Douglas Fir-Larch.

2.03 ACCESSORIES

- A. Fasteners and Anchors:
 - 1. Metal and Finish: Hot-dipped galvanized steel per ASTM A 153/A 153M for high humidity and preservative-treated wood locations, unfinished steel elsewhere.
 - 2. Drywall Screws: Bugle head, hardened steel, power driven type, length three times thickness of sheathing.
- B. Die-Stamped Connectors: Hot dipped galvanized steel, sized to suit framing conditions.
- C. Joist Hangers: Hot dipped galvanized steel, sized to suit framing conditions.
- D. Water-Resistive Barrier: No. 15 asphalt felt.

2.04 FACTORY WOOD TREATMENT

- A. Treated Lumber and Plywood: Comply with requirements of AWPA U1 Use Category System for wood treatments determined by use categories, expected service conditions, and specific applications.
 - Preservative-Treated Wood: Provide lumber and plywood marked or stamped by an ALSC-accredited testing agency, certifying level and type of treatment in accordance with AWPA standards.
- B. Preservative Pressure Treatment of Lumber Above Grade: AWPA U1, Use Category UC3B, Commodity Specification A using waterborne preservative to 0.25 lb/cu ft retention.
 - 1. Treat lumber in contact with roofing, flashing, or waterproofing.
 - 2. Treat lumber in contact with masonry or concrete.

PART 3 EXECUTION

3.01 INSTALLATION - GENERAL

- A. Select material sizes to minimize waste.
- B. Reuse scrap to the greatest extent possible; clearly separate scrap for use on site as accessory components, including: shims, bracing, and blocking.
- C. Where treated wood is used on interior, provide temporary ventilation during and immediately after installation sufficient to remove indoor air contaminants.

3.02 FRAMING INSTALLATION

- A. Set structural members level, plumb, and true to line. Discard pieces with defects that would lower required strength or result in unacceptable appearance of exposed members.
- Make provisions for temporary construction loads, and provide temporary bracing sufficient to maintain structure in true alignment and safe condition until completion of erection and installation of permanent bracing.
- C. Comply with member sizes, spacing, and configurations indicated, and fastener size and spacing indicated, but not less than required by applicable codes and AFPA Wood Frame Construction Manual.
- D. Provide Fire Blocks and Draft Stops per the 2022 California Building Code.

Lakeside Union School District

- E. Install horizontal spanning members with crown edge up and not less than 1-1/2 inches of bearing at each end.
- F. Frame wall openings with two or more studs at each jamb; support headers on cripple studs.

3.03 BLOCKING, NAILERS, AND SUPPORTS

- A. Provide framing and blocking members as indicated or as required to support finishes, fixtures, specialty items, and trim.
- B. Provide the following specific non-structural framing and blocking:
 - 1. Cabinets and shelf supports.
 - Wall brackets.
 - 3. Wall paneling and trim.
 - 4. Joints of rigid wall coverings that occur between studs.
 - 5. Suspended ceiling perimeter angle locations.

3.04 TOLERANCES

- A. Framing Members: 1/4 inch from true position, maximum.
- B. Variation from Plane (Other than Floors): 1/4 inch in 10 feet maximum, and 1/4 inch in 30 feet maximum.

3.05 CLEANING

- A. Waste Disposal: Comply with the following requirements:
- B. Do not leave any wood, shavings, sawdust, etc. on the ground or buried in fill.
- C. Prevent sawdust and wood shavings from entering the storm drainage system.

Lakeside Union School District

SECTION 07 5217

STYRENE-BUTADIENE-STYRENE (SBS) MODIFIED BITUMINOUS MEMBRANE ROOFING PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Patching and stripping in of roofing at new rooftop mounted equipment.
- B. SBS-modified bituminous membrane roofing.
- C. Base sheet.
- D. Sheathing paper.

1.02 RELATED SECTIONS

A. Division 07 Section "Sheet Metal Flashing and Trim" for metal roof penetration flashings, flashings, and counterflashings.

1.03 REFERENCES

- Roofing Terminology: Refer to the following publications for definitions of roofing work related terms in this Section:
 - 1. ASTM D 1079 "Terminology Relating to Roofing and Waterproofing."
 - 2. Glossary of NRCA's "The NRCA Roofing and Waterproofing Manual."
 - 3. Roof Consultants Institute "Glossary of Roofing Terms" for definition of terms related to roofing work in this Section.
- B. Sheet Metal Terminology and Techniques: SMACNA Architectural Sheet Metal Manual.
- C. Hot Roofing Asphalt: Roofing asphalt heated to temperature recommended by roofing manufacturer to flux modified roofing membrane, measured at the mop cart or mechanical spreader immediately before application.

1.04 DESIGN CRITERIA

- A. General: Installed roofing membrane system shall remain watertight; and resist specified wind uplift pressures, thermally induced movement, and exposure to weather without failure.
- B. Material Compatibility: Roofing materials shall be compatible with one another under conditions of service and application required, as demonstrated by roofing system manufacturer based on testing and field experience.
- C. Wind Uplift Performance: Roofing system shall be identical to systems that have been successfully tested by a qualified testing and inspecting agency to resist wind uplift pressure calculated in accordance with ASCE-7.
- D. FMG Listing: Roofing membrane, base flashings, and component materials shall comply with requirements in FMG 4450 and FMG 4470 as part of a roofing system and that are listed in FMG's "RoofNav" for Class 1 or noncombustible construction, as applicable. Identify materials with FMG markings.
 - Fire/Windstorm Classification: Class 1A-90.

E. T24/CRRC-1:

- 1. Roofing system shall comply with the requirements of Title 24.
- 2. Roofing membrane shall be tested by CRRC-1.

F. Cool Roof:

- Aged Solar Reflectance: Equal to or greater than 0.63.
- 2. Thermal Emittance: Equal to or greater than 0.75.

1.05 SUBMITTALS

- A. Product Data: Manufacturer's data sheets for each product to be provided.
- B. Detail Drawings: Provide roofing system plans, elevations, sections, details, and details attachment to other Work, including:
 - Base flashings, cants, and membrane terminations.
 - 2. Crickets, saddles, and tapered edge strips, including slopes.

Lakeside Union School District

- Maintenance Data: Refer to Johns Manville's latest published documents on www.specJM.com.
- D. Guarantees: Special guarantees specified in this Section.

1.06 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified firm that is approved, authorized, or licensed by roofing system manufacturer to install manufacturer's product and that is eligible to receive the specified manufacturer's guarantee.
- B. Manufacturer Qualifications: A qualified manufacturer that has FMG approval for roofing system identical to that used for this Project.
- C. Testing Agency Qualifications: An independent testing agency with the experience and capability to conduct the testing indicated, as documented according to ASTM E 548.
- D. Moisture Survey:
 - 1. Submit prior to installation, results of a non-destructive moisture test of roof system completed by approved third party. Utilize one of the approved methods:
 - a. Infrared Thermography
 - b. Nuclear Backscatter
- E. Source Limitations: Obtain all components from the single source roofing system manufacturer guaranteeing the roofing system. All products used in the system shall be labeled by the single source roofing manufacturer issuing the guarantee.
- F. Fire-Test-Response Characteristics: Provide roofing materials with the fire-test-response characteristics indicated as determined by testing identical products per test method below by UL or another testing and inspecting agency acceptable to authorities having jurisdiction. Materials shall be identified with appropriate markings of applicable testing and inspecting agency.
 - Exterior Fire-Test Exposure: Class A; ASTM E 108, for application and roof slopes indicated.

1.07 DELIVERY, STORAGE, AND HANDLING

- A. Deliver roofing materials in original containers with seals unbroken and labeled with manufacturer's name, product brand name and type, date of manufacture, and directions for storage.
- B. Store liquid materials in their original undamaged containers in a clean, dry, protected location and within the temperature range required by roofing system manufacturer.
- C. Handle and store roofing materials and place equipment in a manner to avoid permanent deflection of deck.

1.08 PROJECT CONDITIONS

A. Weather Limitations: Proceed with installation only when current and forecasted weather conditions permit roofing system to be installed in accordance with manufacturer's written instructions and guarantee requirements.

1.09 PRE-INSTALLATION CONFERENCE

A. Prior to scheduled commencement of the roofing installation and associated work, conduct a meeting at the project site with the installer, architect, owner, John's Manville representative, inspector, and any other persons directly involved with the performance of the work.

1.10 GUARANTEE

- A. Provide manufacturer's system guarantee equal to Johns Manville's Peak Advantage No Dollar Limit Roofing System Guarantee.
 - Single-Source special guarantee includes roofing plies, base flashings, liquid applied flashing, roofing membrane accessories, granule surfaced roofing membrane, and other single-source components of roofing system marketed by the manufacturer.
 - 2. Guarantee Period: 30 years from date of Substantial Completion.
 - 3. Wind Rider: Guarantee shall not exclude coverage for wind events up to 120 mph.

Lakeside Union School District

- 4. Hail Rider: Guarantee shall have no exclusions for hail events up to 1 inch.
- 5. Accidental Puncture Rider: Guarantee shall provide coverage for accidental puncture for up to 8 billed repair hours per year for the life of the guarantee.
- B. Installer's Guarantee: Submit roofing Installer's guarantee, signed by Installer, covering Work of this Section, including all components of roofing system, for the following guarantee period:
 - 1. Guarantee Period: Two Years from date of Substantial Completion.

PART 2 PRODUCTS

2.01 SBS-MODIFIED ASPHALT-SHEET MATERIALS

- A. Roofing Membrane Sheet: ASTM D 6163, Grade S, Type I, glass-fiber-reinforced SBS-modified asphalt sheet; smooth surfaced; suitable for application method specified. Basis of Design: DynaBase.
- B. Roofing Membrane Cap Sheet: ASTM D 6163, Grade G, Type I, glass-fiber-reinforced SBS-modified asphalt sheet; granular surfaced; suitable for application method specified. Basis of Design DynaGlas FR CR.

2.02 BASE FLASHING SHEET MATERIALS - SBS

- A. Backer Sheet: ASTM D 4601, Type II, asphalt-impregnated and -coated, glass-fiber sheet, dusted with fine mineral surfacing on both sides. Basis of Design: PermaPly 28.
- B. Flashing Sheet: ASTM D 6163, Grade G, Type I, glass-fiber-reinforced, SBS-modified asphalt sheet; granular surfaced; suitable for application method specified. Basis of Design: DynaFlex CR.

2.03 AUXILIARY ROOFING MEMBRANE - BITUMINOUS

- A. General: Auxiliary materials recommended by roofing system manufacturer for intended use and compatible with built-up roofing.
- B. Roofing Asphalt: ASTM D 312, Type III.
- C. Asphalt Primer: ASTM D 41. Basis of Design: Asphalt Primer
- D. Asphalt Roofing Cement: ASTM D 4586, asbestos free, of consistency required by roofing system manufacturer for application. Basis of Design: Bestile Industrial Roof Cement
- E. Mastic Sealant: As required by Johns Manville.
- F. Fasteners: Factory-coated steel fasteners and metal or plastic plates meeting corrosion-resistance provisions in FMG 4470, designed for fastening roofing membrane components to substrate, tested by manufacturer for required pullout strength, and provided by the roofing system manufacturer. Basis of Design: UltraFast Fasteners and Plates
- G. Roofing Granules: Ceramic-coated roofing granules matching specified cap sheet, provided by roofing system manufacturer.
- H. Coating: Acrylic elastomeric coating with unique bleed-blocking properties particularly well suited for coating over asphalt surfaces. Basis of Design: JM CR Seam Coating
- I. Miscellaneous Accessories: Provide miscellaneous accessories recommended by roofing system manufacturer.

2.04 AUXILIARY ROOFING SYSTEM COMPONENTS

- A. Expansion Joints: Provide factory fabricated weatherproof, exterior covers for expansion joint openings consisting of flexible rubber membrane, supported by a closed cell foam to form flexible bellows, with two metal flanges, adhesively and mechanically combined to the bellows by a bifurcation process. Provide product manufactured and marketed by single-source membrane supplier that is included in the No Dollar Limit guarantee. Basis of Design: Expand-O-Flash, Expand-O-Gard, or architect pre approved equal.
- B. Metal Flashing Sheet: Metal flashing sheet is specified in Division 07 Section "Sheet Metal Flashing and Trim."

Lakeside Union School District

2.05 REFLECTIVE AND WATERPROOF COATING

A. Elastomeric Coating: ASTM D 6083. A multipurpose, acrylic elastomeric coating for use over a variety of substrates with bleed-blocking properties for coating over asphalt surfaces. Basis of Design: TopGard 4000.

2.06 BASE-SHEET MATERIALS

A. Base Sheet: ASTM D 4601, Type II nonperforated, asphalt-impregnated and -coated, glass-fiber sheet, dusted with fine mineral surfacing on both sides. Basis of Design: PermaPly 28

2.07 SHEATHING PAPER

A. Sheathing Paper: Red-rosin type, minimum 3 lb/100 sq. ft. (0.16 kg/sq. m).

PART 3 EXECUTION

3.01 EXAMINATION

- Examine substrates, areas, and conditions for compliance with requirements affecting performance of roofing system:
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION

- A. Clean and remove from substrate sharp projections, dust, debris, moisture, and other substances detrimental to roofing installation in accordance with roofing system manufacturer's written instructions.
- B. Prevent materials from entering and clogging roof drains and conductors and from spilling or migrating onto surfaces of other construction.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.03 SHEATHING PAPER INSTALLATION

- A. Loosely lay sheathing paper in a single layer over all wood deck areas, side and end lapping each sheet a minimum of 2 inches and 6 inches, respectively.
 - 1. Seal side and end laps with adhesive.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.04 BASE-SHEET INSTALLATION

- A. Install one lapped base sheet course and mechanically fasten to substrate according to roofing system manufacturer's written instructions.
 - 1. Enhance fastening rate in perimeter and corner zones according to code or manufacturer, whichever is more stringent.
- B. Comply with roofing system manufacturer's written instructions for installing roof insulation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.05 ROOFING MEMBRANE INSTALLATION, GENERAL

- A. Install roofing membrane in accordance with roofing system manufacturer's written instructions, applicable recommendations of the roofing manufacturer and requirements in this Section.
- B. Start installation of roofing membrane in presence of roofing system manufacturer's technical personnel.
- C. Where roof slope exceeds 1/2 inch per 12 inches (1:24, contact the membrane manufacturer for installation instructions regarding installation direction and backnailing
- D. Cooperate with testing and inspecting agencies engaged or required to perform services for installing roofing system.
- E. Coordinate installing roofing system so insulation and other components of the roofing membrane system not permanently exposed are not subjected to precipitation or left uncovered at the end of the workday or when rain is imminent.
 - 1. Provide tie-offs at end of each day's work to cover exposed roofing membrane sheets and insulation with a course of coated felt set in roofing cement or hot roofing asphalt with

Lakeside Union School District

- joints and edges sealed.
- 2. Complete terminations and base flashings and provide temporary seals to prevent water from entering completed sections of roofing system.
- 3. Remove and discard temporary seals before beginning work on adjoining roofing.
- F. Asphalt Heating: Heat roofing asphalt to temperature recommended by roofing manufacturer to flux modified membrane. Do not exceed roofing asphalt manufacturer's recommended temperature limits during roofing asphalt heating. Discard roofing asphalt maintained at a temperature exceeding finished blowing temperature for more than 4 hours.
- G. Substrate-Joint Penetrations: Prevent roofing asphalt from penetrating substrate joints, entering building, or damaging roofing system components or adjacent building construction.
- H. Proceed with installation only after unsatisfactory conditions have been corrected.

3.06 SBS-MODIFIED BITUMINOUS MEMBRANE INSTALLATION

- A. Install **three** modified bituminous roofing membrane sheets and cap sheet according to roofing manufacturer's written instructions, starting at low point of roofing system. Extend roofing membrane sheets over and terminate beyond cants, installing as follows:
 - 1. Adhere to substrate in a solid mopping of hot roofing asphalt applied at temperatures recommended by roofing system manufacturer.
 - 2. Unroll roofing membrane sheets and allow them to relax for minimum time period required by manufacturer.
- B. Laps: Accurately align roofing membrane sheets, without stretching, and maintain uniform side and end laps. Stagger end laps. Completely bond and seal laps, leaving no voids.
 - 1. Repair tears and voids in laps and lapped seams not completely sealed.
 - 2. Apply roofing granules to cover exuded bead at laps while bead is hot.
- C. Install roofing membrane sheets so side and end laps shed water.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.07 FLASHING AND STRIPPING INSTALLATION

- A. Install base flashing over cant strips and other sloping and vertical surfaces, at roof edges, and at penetrations through roof, and secure to substrates according to roofing system manufacturer's written instructions and as follows:
 - 1. Prime substrates with asphalt primer if required by roofing system manufacturer.
 - 2. Backer Sheet Application: Mechanically fasten backer sheet to walls or parapets. Adhere backer sheet over roofing membrane at cants in a solid mopping of hot roofing asphalt.
 - 3. Backer Sheet Application: Install backer sheet and adhere to substrate in a solid mopping of hot roofing asphalt.
 - 4. Flashing Sheet Application: Adhere flashing sheet to substrate in a solid mopping of hot roofing asphalt applied at EVT. Apply hot roofing asphalt to back of flashing sheet if recommended by roofing system manufacturer.
- B. Extend base flashing up walls or parapets a minimum of 8 inches (200 mm) above roofing membrane and 4 inches (100 mm) onto field of roofing membrane.
- C. Mechanically fasten top of base flashing securely at terminations and perimeter of roofing.
 - Seal top termination of base flashing with a strip of glass-fiber fabric set in MBR Flashing cement.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.08 COATING INSTALLATION

- A. Ensure that all surfaces are clean, dry and free of any dirt, grease, oil or other debris that may interfere with proper adhesion.
- B. Apply coating to roofing membrane and base flashings as recommended by the manufacturer using approved spray apparatus. Apply in two coats allowing the first coat to completely dry before applying the second coat.

Lakeside Union School District

3.09 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to perform roof tests and inspections and to prepare test reports.
- B. Roofing Manufacturer's Representative shall visit the jobsite to observe the installation of the roofing. Frequency of observations shall be determined at the pre-installation roofing conference.
- C. Final Roof Inspection: Arrange for roofing system manufacturer's Registered Roof Observer (RRO) to inspect roofing installation on completion and submit report to Architect.
- D. Repair or remove and replace components of roofing system where test results or inspections indicate that they do not comply with specified requirements.
- E. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.10 PROTECTION AND CLEANING

- A. Protect roofing system from damage and wear during remainder of construction period.
- B. Clean overspray and spillage from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

Lakeside Union School District

SECTION 07 6200 SHEET METAL FLASHING AND TRIM

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Fabricated sheet metal items, including flashings and counterflashings.
- B. Sealants for joints within sheet metal fabrications.

1.02 RELATED REQUIREMENTS

- A. Section 07 9200 Joint Sealers.
- B. Section 09 9000 Painting and Coating: Field painting.

1.03 REFERENCE STANDARDS

- A. ASTM A653/A653M Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process 2022.
- B. ASTM B32 Standard Specification for Solder Metal 2020.
- C. ASTM B209 Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate 2014.
- D. ASTM C920 Standard Specification for Elastomeric Joint Sealants 2018.
- E. ASTM D226/D226M Standard Specification for Asphalt-Saturated Organic Felt Used in Roofing and Waterproofing 2017 (Reapproved 2023).
- F. ASTM D4586/D4586M Standard Specification for Asphalt Roof Cement, Asbestos-Free 2007 (Reapproved 2018).
- G. SMACNA (ASMM) Architectural Sheet Metal Manual 2012.

1.04 SUBMITTALS

- A. See Section 01 3010 Submittals, for submittal procedures.
- B. Shop Drawings: Indicate material profile, jointing pattern, jointing details, fastening methods, flashings, terminations, and installation details.

1.05 QUALITY ASSURANCE

- A. Perform work in accordance with SMACNA Architectural Sheet Metal Manual requirements and standard details
- B. Fabricator and Installer Qualifications: Company specializing in sheet metal work with three3 years of documented experience.

1.06 DELIVERY, STORAGE, AND HANDLING

- A. Stack material to prevent twisting, bending, and abrasion, and to provide ventilation. Slope metal sheets to ensure drainage.
- B. Prevent contact with materials that could cause discoloration or staining.

PART 2 PRODUCTS

2.01 SHEET MATERIALS

A. Galvanized Steel: ASTM A653/A653M, with G90/Z275 zinc coating; minimum 24 gage (0.0239 inch) thick base metal.

2.02 ACCESSORIES

- A. Fasteners: Galvanized steel, with soft neoprene washers.
- B. Underlayment: ASTM D226/D226M, organic roofing felt, Type II ("No. 30").
- C. Slip Sheet: Rosin sized building paper.
- D. Primer: Zinc chromate type.
- E. Protective Backing Paint: Zinc molybdate alkyd.
- F. Sealant to be Concealed in Completed Work: Non-curing butyl sealant.

Lakeside Union School District

- G. Sealant to be Exposed in Completed Work: ASTM C920; elastomeric sealant, 100 percent silicone with minimum movement capability of plus/minus 25 percent and recommended by manufacturer for substrates to be sealed; clear.
- H. Sealant: Type specified in Section 07 9200.
- Plastic Cement: ASTM D4586, Type I.
- J. Solder: ASTM B32; Sn50 (50/50) type.

2.03 FABRICATION

- A. Form sections true to shape, accurate in size, square, and free from distortion or defects.
- B. Form pieces in longest possible lengths.
- C. Hem exposed edges on underside 1/2 inch; miter and seam corners.
- D. Form material with flat lock seams, except where otherwise indicated. At moving joints, use sealed lapped, bayonet-type or interlocking hooked seams.
- E. Fabricate corners from one piece with minimum 18 inch long legs; seam for rigidity, seal with sealant.
- F. Fabricate vertical faces with bottom edge formed outward 1/4 inch (6 mm) and hemmed to form drip.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify roof openings, curbs, pipes, sleeves, ducts, and vents through roof are solidly set, reglets in place, and nailing strips located.
- B. Verify roofing termination and base flashings are in place, sealed, and secure.

3.02 PREPARATION

- A. Install starter and edge strips, and cleats before starting installation.
- B. Back paint concealed metal surfaces with protective backing paint to a minimum dry film thickness of 15 mil.

3.03 INSTALLATION

- A. Secure flashings in place using concealed fasteners. Use exposed fasteners only where permitted.
- B. Apply plastic cement compound between metal flashings and felt flashings.
- C. Fit flashings tight in place. Make corners square, surfaces true and straight in planes, and lines accurate to profiles.
- D. Solder metal joints for full metal surface contact. After soldering, wash metal clean with neutralizing solution and rinse with water.

3.04 FIELD QUALITY CONTROL

- See Section 01 4000 Quality Requirements, for field inspection requirements.
- B. Inspection will involve surveillance of work during installation to ascertain compliance with specified requirements.

Lakeside Union School District

SECTION 07 9200 JOINT SEALANTS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Nonsag gunnable joint sealants.
- B. Self-leveling pourable joint sealants.
- C. Joint backings and accessories.

1.02 REFERENCE STANDARDS

- A. ASTM C834 Standard Specification for Latex Sealants 2017.
- B. ASTM C920 Standard Specification for Elastomeric Joint Sealants 2018.
- C. ASTM C1193 Standard Guide for Use of Joint Sealants 2016.
- D. ASTM D2240 Standard Test Method for Rubber Property--Durometer Hardness 2015 (Reapproved 2021).
- E. SCAQMD 1168 Adhesive and Sealant Applications 1989, with Amendment (2022).

1.03 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.
- B. Installer Qualifications: Company specializing in performing the work of this section with minimum three years documented experience.

1.04 WARRANTY

- A. See Section 01 7800 Closeout Submittals, for additional warranty requirements.
- B. Correct defective work within a five year period after Date of Substantial Completion.
- C. Warranty: Include coverage for installed sealants and accessories that fail to achieve watertight seal, exhibit loss of adhesion or cohesion, or do not cure.

PART 2 PRODUCTS

2.01 JOINT SEALANT APPLICATIONS

A. Scope:

- Exterior Joints: Seal open joints, whether or not the joint is indicated on drawings, unless specifically indicated not to be sealed. Exterior joints to be sealed include, but are not limited to, the following items.
 - a. Wall expansion and control joints.
 - b. Joints between door, window, and other frames and adjacent construction.
 - Joints between different exposed materials.
- Interior Joints: Do not seal interior joints unless specifically indicated to be sealed. Interior joints to be sealed include, but are not limited to, the following items.
 - a. Joints between door, window, and other frames and adjacent construction.
- 3. Do not seal the following types of joints.
 - Joints indicated to be treated with manufactured expansion joint cover or some other type of sealing device.
 - Joints where sealant is specified to be provided by manufacturer of product to be sealed.
 - c. Joints where installation of sealant is specified in another section.
 - d. Joints between suspended panel ceilings/grid and walls.
- B. Exterior Joints: Use nonsag polyurethane sealant, unless otherwise indicated.
- C. Interior Joints: Use nonsag Acrylic emulsion latex sealant, unless otherwise indicated.
 - 1. Wall and Ceiling Joints in Non-Wet Areas: Acrylic emulsion latex sealant.

Lakeside Union School District

2.02 JOINT SEALANTS - GENERAL

A. Sealants and Primers: Provide products having lower volatile organic compound (VOC) content than indicated in South Coast Air Quality Management District (SCAQMD); Rule 1168.

2.03 NONSAG JOINT SEALANTS

- A. Type 1 Polyurethane Sealant: ASTM C920, Grade NS, Uses M and A; single component; not expected to withstand continuous water immersion or traffic.
 - 1. Movement Capability: Plus and minus 25 percent, minimum.
- B. Type 2 Acrylic Emulsion Latex: Water-based; ASTM C834, single component, non-staining, non-bleeding, non-sagging; not intended for exterior use.
 - 1. Color: Standard colors matching finished surfaces, Type OP (opaque).

2.04 SELF-LEVELING SEALANTS

- A. Semi-Rigid Self-Leveling Polyurea Joint Filler: Two-component, 100 percent solids; Intended for filling cracks and control joints not subject to significant movement; rigid enough to support concrete edges under traffic.
 - Hardness: 75, Shore A, minimum, when tested in accordance with ASTM D2240 after 7 days.
 - 2. Color: Concrete gray.

2.05 ACCESSORIES

- A. Backer Rod: Cylindrical cellular foam rod with surface that sealant will not adhere to, compatible with specific sealant used, and recommended by backing and sealant manufacturers for specific application.
- B. Backing Tape: Self-adhesive polyethylene tape with surface that sealant will not adhere to and recommended by tape and sealant manufacturers for specific application.
- C. Joint Cleaner: Non-corrosive and non-staining type, type recommended by sealant manufacturer; compatible with joint forming materials.
- D. Primers: Type recommended by sealant manufacturer to suit application; non-staining.

PART 3 EXECUTION

3.01 EXAMINATION

- Verify that joints are ready to receive work.
- B. Verify that backing materials are compatible with sealants.
- C. Verify that backer rods are of the correct size.

3.02 PREPARATION

- A. Remove loose materials and foreign matter that could impair adhesion of sealant.
- B. Clean joints, and prime as necessary, in accordance with manufacturer's instructions.
- C. Perform preparation in accordance with manufacturer's instructions and ASTM C1193.
- D. Mask elements and surfaces adjacent to joints from damage and disfigurement due to sealant work; be aware that sealant drips and smears may not be completely removable.
- E. Concrete Floor Joints That Will Be Exposed in Completed Work: Test joint filler in inconspicuous area to verify that it does not stain or discolor slab.

3.03 INSTALLATION

- A. Perform work in accordance with sealant manufacturer's requirements for preparation of surfaces and material installation instructions.
- B. Perform installation in accordance with ASTM C1193.
- C. Measure joint dimensions and size joint backers to achieve width-to-depth ratio, neck dimension, and surface bond area as recommended by manufacturer, except where specific dimensions are indicated.

Lakeside Union School District

- D. Install bond breaker backing tape where backer rod cannot be used.
- E. Install sealant free of air pockets, foreign embedded matter, ridges, and sags, and without getting sealant on adjacent surfaces.
- F. Do not install sealant when ambient temperature is outside manufacturer's recommended temperature range, or will be outside that range during the entire curing period, unless manufacturer's approval is obtained and instructions are followed.
- G. Nonsag Sealants: Tool surface concave, unless otherwise indicated; remove masking tape immediately after tooling sealant surface.
- H. Concrete Floor Joint Filler: After full cure, shave joint filler flush with top of concrete slab.

3.04 FIELD QUALITY CONTROL

A. Remove and replace failed portions of sealants using same materials and procedures as indicated for original installation.

Lakeside Union School District

SECTION 08 5113 ALUMINUM WINDOWS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Extruded aluminum windows with fixed sash.
- B. Factory glazing.

1.02 REFERENCE STANDARDS

- A. AAMA/WDMA/CSA 101/I.S.2/A440 North American Fenestration Standard/Specification for Windows, Doors, and Skylights 2022.
- B. AAMA CW-10 Care and Handling of Architectural Aluminum from Shop to Site 2015.
- C. AAMA CW-10 Care and Handling of Architectural Aluminum From Shop to Site; American Architectural Manufacturers Association; 2012.
- D. ASTM B221 Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes 2021.
- E. ASTM B221M Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric) 2021.
- F. ASTM E283 Standard Test Method for Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen 2004 (Reapproved 2012).
- G. ASTM E331 Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference 2000 (Reapproved 2023).

1.03 SUBMITTALS

- A. Product Data: Provide component dimensions and information on glass and glazing.
- B. Shop Drawings: Indicate opening dimensions, elevations of different types, framed opening tolerances, method for achieving air and vapor barrier seal to adjacent construction, anchorage locations, and installation requirements.
- C. Test Reports: Prior to submitting shop drawings or starting fabrication, submit test report(s) by independent testing agency showing compliance with performance requirements in excess of those prescribed by specified grade.
- D. Warranty: Submit manufacturer warranty and ensure that forms have been completed in Owner's name and registered with manufacturer.

1.04 QUALITY ASSURANCE

A. Manufacturer and Installer Qualifications: Company specializing in fabrication of commercial aluminum windows of types required, with not fewer than five years of experience.

1.05 DELIVERY, STORAGE, AND HANDLING

- A. Comply with requirements of AAMA CW-10.
- B. Protect finished surfaces with wrapping paper or strippable coating during installation. Do not use adhesive papers or sprayed coatings that bond to substrate when exposed to sunlight or weather.

1.06 FIELD CONDITIONS

- A. Do not install sealants when ambient temperature is less than 40 degrees F.
- B. Maintain this minimum temperature during and 24 hours after installation of sealants.

1.07 WARRANTY

- A. Correct defective Work within a five year period after the Date of Substantial Completion.
- B. Provide five year manufacturer warranty against failure of glass seal on insulating glass units, including interpane dusting or misting. Include provision for replacement of failed units.

Lakeside Union School District

C. Provide five year manufacturer warranty against excessive degradation of exterior finish. Include provision for replacement of units with excessive fading, chalking, or flaking.

PART 2 PRODUCTS

2.01 MANUFACTURERS

- A. Basis of Design: Torrance Aluminum 1500 Series.
- B. Other Acceptable Aluminum Windows Manufacturers:
 - 1. Substitutions: Any manufacturer that meets all performance requirements specified: See Section 01 6000 Product Requirements.

2.02 WINDOWS

- A. Aluminum Windows: Extruded aluminum frame and sash, factory fabricated, factory finished, related flashings, and anchorage and attachment devices.
 - 1. Frame Depth: 1-1/2 inches.
 - 2. Provide units factory glazed.
 - 3. Fabrication: Joints and corners flush, hairline, and weatherproof, accurately fitted and secured; prepared to receive anchors; fasteners and attachments concealed from view; reinforced as required for operating hardware and imposed loads.
 - Perimeter Clearance: Minimize space between framing members and adjacent construction while allowing expected movement.
 - 5. Movement: Accommodate movement between window and perimeter framing and deflection of lintel, without damage to components or deterioration of seals.
 - 6. System Internal Drainage: Drain to the exterior by means of a weep drainage network any water entering joints, condensation occurring in glazing channel, and migrating moisture occurring within system.
- B. Fixed, Non-Operable Type:
 - 1. Size: Unit size approximate 4'-0" wide by 6'-4" high, nominal. Contractor shall field verify exact size to fit within existing wood framed openings.
 - Glazing: Double insulated: clear: transparent.
 - 3. Exterior Finish: Class I natural anodized.
 - 4. Interior Finish: Class I natural anodized.

2.03 PERFORMANCE REQUIREMENTS

- A. Grade: AAMA/WDMA/CSA 101/I.S.2/A440 requirements for specific window type:
- B. Design Pressure (DP): In accordance with applicable codes.
- C. Member Deflection: Limit member deflection to flexure limit of glass in any direction, with full recovery of glazing materials.
- D. Water Leakage: No uncontrolled leakage on interior face when tested in accordance with ASTM E331 at differential pressure of 12.11 psf.
- E. Air Leakage: Maximum of 0.1 cu ft/min sq ft per unit area of outside frame dimension, with 6.27 psf differential pressure when tested in accordance with ASTM E283.

2.04 MATERIALS

A. Extruded Aluminum: ASTM B221 (ASTM B221M), 6063 alloy, T6 temper.

2.05 FINISHES

A. Class I Natural Anodized Finish: AAMA 611 AA-M12C22A41 Clear anodic coating not less than 0.7 mils thick.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that wall openings and adjoining air and vapor seal materials are ready to receive aluminum windows.

Lakeside Union School District

3.02 INSTALLATION

- A. Install windows in accordance with manufacturer's instructions.
- B. Remove, reinstall and/or replace any existing wood trim members required for the installation of the new aluminum window units. Wood trim members shall be painted per Specification Section 09 9000.
- C. Attach window frame and shims to perimeter opening to accommodate construction tolerances and other irregularities.
- D. Align window plumb and level, free of warp or twist. Maintain dimensional tolerances and alignment with adjacent work.
- E. Set sill members and sill flashing in continuous bead of sealant.

3.03 CLEANING

- A. Remove protective material from factory finished aluminum surfaces.
- B. Wash surfaces by method recommended and acceptable to window manufacturer; rinse and wipe surfaces clean.

Lakeside Union School District

SECTION 09 2116 GYPSUM BOARD ASSEMBLIES

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Gypsum wallboard.
- B. Joint treatment and accessories.
- C. Textured finish system.

1.02 REFERENCE STANDARDS

- A. ASTM C475/C475M Standard Specification for Joint Compound and Joint Tape for Finishing Gypsum Board 2017 (Reapproved 2022).
- B. ASTM C840 Standard Specification for Application and Finishing of Gypsum Board 2020.
- C. ASTM C1002 Standard Specification for Steel Self-Piercing Tapping Screws for Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs 2022.
- D. ASTM C1047 Standard Specification for Accessories for Gypsum Wallboard and Gypsum Veneer Base 2019.
- E. GA-216 Application and Finishing of Gypsum Panel Products 2021.

1.03 SUBMITTALS

- A. See Section 01 3010 Submittals, for submittal procedures.
- B. Product Data: Provide data on gypsum board, accessories, and joint finishing system.

PART 2 PRODUCTS

2.01 GYPSUM BOARD ASSEMBLIES

A. Provide completed assemblies complying with ASTM C840 and GA-216.

2.02 BOARD MATERIALS

- A. Manufacturers Gypsum-Based Board:
 - 1. Georgia-Pacific Gypsum; www.gpgypsum.com
 - 2. National Gypsum Company; www.nationalgypsum.com
 - 3. USG Corporation; www.usg.com
 - 4. Substitutions: See Section 01 6000 Product Requirements.
- B. Gypsum Wallboard: Paper-faced gypsum panels as defined in ASTM C1396/C1396M; sizes to minimize joints in place; ends square cut.
 - 1. Application: Use for vertical surfaces and ceilings, unless otherwise indicated.
 - 2. Thickness:
 - a. Vertical Surfaces: 5/8 inch.
 - b. Ceilings: 5/8 inch.

2.03 ACCESSORIES

- A. Finishing Accessories: ASTM C1047, galvanized steel or rolled zinc, unless noted otherwise.
 - 1. Types: As detailed or required for finished appearance.
 - 2. Special Shapes: In addition to conventional corner bead and control joints, provide Ubead at exposed panel edges.
- B. Joint Materials: ASTM C475 and as recommended by gypsum board manufacturer for project conditions.
 - 1. Tape: 2 inch wide, creased paper tape for joints and corners.
 - Ready-mixed vinyl-based joint compound.
- C. Textured Finish Materials: Latex-based compound; plain.
- D. Screws for Fastening of Gypsum Panel Products to Cold-Formed Steel Studs Less than 0.033 inch in Thickness and Wood Members: ASTM C1002; self-piercing tapping screws, corrosion

Lakeside Union School District

resistant.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that project conditions are appropriate for work of this section to commence.

3.02 BOARD INSTALLATION

- A. Comply with ASTM C 840, GA-216, ASTM C 840, GA-216, GA-216, and ASTM C 840. Install to minimize butt end joints, especially in highly visible locations.
- B. Single-Layer Non-Rated: Install gypsum board in most economical direction, with ends and edges occurring over firm bearing.
- Moisture Protection: Treat cut edges and holes in moisture resistant gypsum board with sealant.

3.03 INSTALLATION OF TRIM AND ACCESSORIES

- A. Corner Beads: Install at external corners, using longest practical lengths.
- Edge Trim: Install at locations where gypsum board abuts dissimilar materials.

3.04 JOINT TREATMENT

- A. Paper Faced Gypsum Board: Use paper joint tape, bedded with ready-mixed vinyl-based joint compound and finished with ready-mixed vinyl-based joint compound.
- B. Finish gypsum board in accordance with levels defined in ASTM C840, as follows:
 - Level 4: Walls and ceilings to receive paint finish or wall coverings, unless otherwise indicated.
 - 2. Level 5: Walls and ceilings to receive semi-gloss or gloss paint finish and other areas specifically indicated.
 - 3. Level 3: Walls to receive textured wall finish.
 - 4. Level 2: In utility areas, behind cabinetry, and on backing board to receive tile finish.
 - 5. Level 1: Fire rated wall areas above finished ceilings, whether or not accessible in the completed construction.
- C. Tape, fill, and sand exposed joints, edges, and corners to produce smooth surface ready to receive finishes.
 - 1. Feather coats of joint compound so that camber is maximum 1/32 inch.
- D. Where Level 5 finish is indicated, spray apply high build drywall surfacer over entire surface after joints have been properly treated; achieve a flat and tool mark-free finish.

3.05 TEXTURE FINISH

A. Apply finish texture coating by means of spraying apparatus in accordance with manufacturer's instructions and to match approved sample.

3.06 TOLERANCES

A. Maximum Variation of Finished Gypsum Board Surface from True Flatness: 1/8 inch in 10 feet in any direction.

Lakeside Union School District

SECTION 09 5100 ACOUSTICAL CEILINGS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Suspended metal grid ceiling system.
- B. Acoustical units.

1.02 REFERENCE STANDARDS

- A. ASTM C635/C635M Standard Specification for Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings 2022.
- B. ASTM C636/C636M Standard Practice for Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-In Panels 2019.
- C. ASTM E580/E580M Standard Practice for Installation of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Subject to Earthquake Ground Motions 2022.
- D. ASTM E1264 Standard Classification for Acoustical Ceiling Products 2022.

1.03 ADMINISTRATIVE REQUIREMENTS

- A. California State Structural Safety Interpretive Manual; IR No. 25-2.13, "Metal Suspension Systems for Lay-In Panel Celings".
- B. Title 24, Part 2, C.C.R., 2022 C.B.C. (2021 I.B.C. w/ California Amendments); Section 2506.2.1.
- C. Sequence work to ensure acoustical ceilings are not installed until building is enclosed, sufficient heat is provided, dust generating activities have terminated, and overhead work is completed, tested, and approved.
- D. Do not install acoustical units until after interior wet work is dry.

1.04 SUBMITTALS

- A. See Section 01 3010 Submittal, for submittal procedures.
- B. Product Data: Provide data on suspension system components and acoustical units.

1.05 QUALITY ASSURANCE

- A. Single-Source Responsibility: Provide acoustical panel units and grid components by a single manufacturer.
- B. Fire Performance Characteristics: Identify acoustical ceiling components with appropriate markings of applicable testing and inspecting organization.
 - 1. Surface Burning Characteristics: As follows, tested per ASTM E 84 and complying with ASTM E 1264 for Class A products.
 - a. Flame Spread: 25 or less
 - b. Smoke Developed: 50 or less
- C. Handle acoustical ceiling units carefully to avoid chipping edges or damaged units in any way.

1.06 FIELD CONDITIONS

- A. Deliver acoustical ceiling units to project site in original, unopened packages and store them in a fully enclosed space where they will be protected against damage from moisture, direct sunlight, surface contamination, and other causes.
- B. Maintain uniform temperature of minimum 60 degrees F, and maximum humidity of 40 percent prior to, during, and after acoustical unit installation.

PART 2 PRODUCTS

2.01 ACOUSTICAL UNITS

- A. Manufacturers:
 - 1. Armstrong World Industries, Inc: www.armstrong.com.
 - 2. CertainTeed Corporation: www.certainteed.com.

Lakeside Union School District

- 3. USG: www.usg.com.
- 4. Substitutions: See Section 01 6000 Product Requirements.
- B. Acoustical Units General: ASTM E1264, Class A.
 - Manufacturer: Armstrong or equal.
- C. Acoustical Panel Type Kitchen Use: Wet-formed mineral fiber, ASTM E 1264 Type III, with the following characteristics:
 - 1. Size: 24 x 48 inches (600 x 1200 mm).
 - 2. Thickness: 5/8 inches.
 - Composition: Wet felted.
 - 4. Light Reflectance: 80 percent, determined as specified in ASTM E 1477.
 - 5. Antimicrobial Protection: Resistance against the growth of mold / mildew and gram positive and gram negative odor and stain causing bacteria.
 - 6. Edge: Square.
 - 7. Surface Finish: Factory-applied latex paint.
 - 8. Surface Color: White.
 - 9. Surface Pattern: Smooth.
 - 10. Product: Armstrong Kitchen Zone.

2.02 SUSPENSION SYSTEM(S)

- A. Manufacturers:
 - Armstrong World Industries, Inc; Product Prelude and Prelude Plus Systems: www.armstrong.com.
 - 2. Chicago Metallic Corporation; Product 660 and 730 Systems: www.chicagometallic.com.
 - 3. USG; Product DX and ZXA Systems: www.usg.com.
 - 4. Substitutions: See Section 01 6000 Product Requirements.
- B. Suspension Systems General: Complying with ASTM C635/C635M; die cut and interlocking components, with stabilizer bars, clips, splices, perimeter moldings, and hold down clips as required.
 - 1. Manufacturer: Armstrong or equal.
- C. Components: All main beams and cross tees shall be commercial quality hot-dipped galvanized (galvanized steel, aluminum, or stainless steel) as per ASTM A 653. Main beams and cross tees are double-web steel construction with type exposed flange design. Exposed surfaces chemically cleansed, capping pre-finished galvanized steel (aluminum or stainless steel) in baked polyester paint. Main beams and cross tees shall have rotary stitching (exception: extruded aluminum or stainless steel).
- D. ExposedSteel Suspension System: Formed steel, commercial quality cold rolled; heavy-duty.
 - 1. Profile: Tee; 15/16 inch wide face.
 - Construction: Double web.
 - 3. Finish: White painted.
- E. Suspension system shall meet DSA Product Acceptance Documents.

2.03 ACCESSORIES

- A. Support Channels and Hangers: Galvanized steel; size and type to suit application, seismic requirements, and ceiling system flatness requirement specified.
- B. Wire for Hangers and Ties: ASTM A 641, Class 1 zinc coating, soft temper, pre-stretched, with a yield stress load of at least time three design load, but not less than 12 gauge.
- C. Edge Moldings and Trim: Metal or extruded aluminum of types and profiles indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations, including light fixtures, that fit type of edge detail and suspension system indicated. Provide moldings with exposed flange of the same width as exposed runner.
- D. Perimeter Moldings at Clouds: Same material and finish as grid.
 - 1. At Exposed Grid: Armstrong Channel Moulding Trim 7835 or equal.

Lakeside Union School District

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify existing conditions before starting work.

3.02 INSTALLATION - SUSPENSION SYSTEM

- A. Install suspension system in accordance with Title 24, Part 2 C.C.R., 2022 C.B.C., DSA IR 25-2.13, manufacturer's instructions and as supplemented in this section.
- B. Rigidly secure system, including integral mechanical and electrical components, for maximum deflection of 1:360.
- C. Lay out system to a balanced grid design with edge units no less than 50 percent of acoustical unit size.
- Install after major above-ceiling work is complete. Coordinate the location of hangers with other work.
- E. Hang suspension system independent of walls, columns, ducts, pipes and conduit. Where carrying members are spliced, avoid visible displacement of face plane of adjacent members.
- F. Where ducts or other equipment prevent the regular spacing of hangers, reinforce the nearest affected hangers and related carrying channels to span the extra distance.
- G. Do not support components on main runners or cross runners if weight causes total dead load to exceed deflection capability.
- H. Support fixture loads using supplementary hangers located within 6 inches of each corner, or support components independently.
- I. Do not eccentrically load system or induce rotation of runners.
- J. Perimeter Molding: Install at intersection of ceiling and vertical surfaces and at junctions with other interruptions.
 - Use longest practical lengths.
 - 2. Overlap and rivet corners.

3.03 INSTALLATION - ACOUSTICAL UNITS

- A. Install acoustical units in accordance with manufacturer's instructions.
- B. Fit acoustical units in place, free from damaged edges or other defects detrimental to appearance and function.
- C. Fit border trim neatly against abutting surfaces.
- D. Install units after above-ceiling work is complete.
- E. Install acoustical units level, in uniform plane, and free from twist, warp, and dents.
- F. Cutting Acoustical Units:
 - 1. Make field cut edges of same profile as factory edges.

3.04 ADJUSTING AND CLEANING

- A. Replace damaged and broken panels.
- B. Clean exposed surfaces of acoustical ceilings, including trim, edge moldings, and suspension members. Comply with manufacturer's instructions for cleaning and touch up of minor finish damage. Remove and replace work that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

3.05 TOLERANCES

- A. Maximum Variation from Flat and Level Surface: 1/8 inch in 10 feet.
- B. Maximum Variation from Plumb of Grid Members Caused by Eccentric Loads: 2 degrees.

Lakeside Union School District

SECTION 09 9000 PAINTING AND COATING

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Surface preparation.
- B. Field application of paints.
- C. Scope: Finish all interior and exterior surfaces within the area of work exposed to view, as either identified in the finish schedule or affected by the work of this contract, unless fully factory-finished and unless otherwise indicated, including the following:
 - 1. All wall surfaces within the Kitchen.
 - 2. Door and frame surfaces that face the Kitchen.
 - 3. Window frames within the Kitchen and exterior surfaces affected by the installation of the new window units.
 - 4. Both sides and edges of plywood backboards for electrical and telecom equipment before installing equipment.
 - Mechanical and Electrical:
 - a. In finished areas, paint all insulated and exposed pipes, unless otherwise indicated.
 - b. In finished areas, paint shop-primed items.
 - c. Paint interior surfaces of air ducts that are visible through grilles and louvers with one coat of flat black paint to visible surfaces.
- D. Do Not Paint or Finish the Following Items:
 - 1. Items fully factory-finished unless specifically so indicated; materials and products having factory-applied primers are not considered factory finished.
 - 2. Items indicated to receive other finishes.
 - 3. Items indicated to remain unfinished.
 - 4. Fire rating labels, equipment serial number and capacity labels, and operating parts of equipment.
 - 5. Stainless steel, anodized aluminum, bronze, terne, and lead items.
 - 6. Floors, unless specifically so indicated.
 - 7. Ceramic and other tiles.
 - 8. Brick, architectural concrete, cast stone, integrally colored plaster and stucco.
 - 9. Glass.
 - 10. Concealed pipes, ducts, and conduits.

1.02 REFERENCE STANDARDS

A. 40 CFR 59, Subpart D - National Volatile Organic Compound Emission Standards for Architectural Coatings; U.S. Environmental Protection Agency current edition.

1.03 SUBMITTALS

- A. See Section 01 3010 Submittal, for submittal procedures.
- B. Product Data: Provide complete list of all products to be used, with the following information for each:
 - 1. Manufacturer's name, product name and/or catalog number, and general product category (e.g. "alkyd enamel").
 - 2. MPI product number (e.g. MPI #47).
 - 3. Cross-reference to specified paint system(s) product is to be used in; include description of each system.
- C. Samples: Submit three paper "draw down" samples, 8-1/2 by 11 inches in size, illustrating range of colors available for each finishing product specified.
 - 1. Where sheen is specified, submit samples in only that sheen.
- D. Certification: By manufacturer that all paints and coatings comply with VOC limits specified.

Lakeside Union School District

1.04 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the products specified, with minimum three years documented experience.

1.05 DELIVERY, STORAGE, AND HANDLING

- A. Deliver products to site in sealed and labeled containers; inspect to verify acceptability.
- B. Container Label: Include manufacturer's name, type of paint, brand name, lot number, brand code, coverage, surface preparation, drying time, cleanup requirements, color designation, and instructions for mixing and reducing.
- C. Paint Materials: Store at minimum ambient temperature of 45 degrees F and a maximum of 90 degrees F, in ventilated area, and as required by manufacturer's instructions.

1.06 FIELD CONDITIONS

- A. Do not apply materials when surface and ambient temperatures are outside the temperature ranges required by the paint product manufacturer.
- B. Follow manufacturer's recommended procedures for producing best results, including testing of substrates, moisture in substrates, and humidity and temperature limitations.
- C. Do not apply exterior coatings during rain or snow, or when relative humidity is outside the humidity ranges required by the paint product manufacturer.
- D. Minimum Application Temperatures for Latex Paints: 45 degrees F for interiors; 50 degrees F for exterior; unless required otherwise by manufacturer's instructions.
- E. Provide lighting level of 80 ft candles measured mid-height at substrate surface.

PART 2 PRODUCTS

2.01 MANUFACTURERS

- A. Provide all paint and coating products used in any individual system from the same manufacturer; no exceptions.
- B. Paints:
 - Base Manufacturer: Dunn Edwards.
- C. Primer Sealers: Same manufacturer as top coats.
- D. Substitutions: See Section 01 6000 Product Requirements.

2.02 PAINTS AND COATINGS - GENERAL

- A. Paints and Coatings: Ready mixed, unless intended to be a field-catalyzed coating.
 - 1. Provide paints and coatings of a soft paste consistency, capable of being readily and uniformly dispersed to a homogeneous coating, with good flow and brushing properties, and capable of drying or curing free of streaks or sags.
 - 2. Supply each coating material in quantity required to complete entire project's work from a single production run.
 - 3. Do not reduce, thin, or dilute coatings or add materials to coatings unless such procedure is specifically described in manufacturer's product instructions.
- B. Primers: As follows unless other primer is required or recommended by manufacturer of top coats; where the manufacturer offers options on primers for a particular substrate, use primer categorized as "best" by the manufacturer.
- C. Volatile Organic Compound (VOC) Content:
 - 1. Provide coatings that comply with the most stringent requirements specified in the following:
 - a. 40 CFR 59, Subpart D--National Volatile Organic Compound Emission Standards for Architectural Coatings.
 - Determination of VOC Content: Testing and calculation in accordance with 40 CFR 59, Subpart D (EPA Method 24), exclusive of colorants added to a tint base and water added at project site; or other method acceptable to authorities having jurisdiction.

Lakeside Union School District

- D. Sheens: Provide the sheens specified; where sheen is not specified, sheen will be selected later by Architect from the manufacturer's full line.
- E. Colors: To be selected from manufacturer's full range of available colors.
 - 1. Selection to be made by Architect after award of contract.
 - 2. In finished areas, finish pipes, ducts, conduit, and equipment the same color as the wall/ceiling they are mounted on/under.

2.03 PAINT SYSTEMS - EXTERIOR

- A. Paint WE-OP-3L Wood, Opaque, Latex, 3 Coat:
 - 1. One coat of latex primer sealer, EZ-Prime Premium.
 - 2. Semi-gloss: Two coats of latex enamel; Spartashield.
- B. Paint CE-OP-3L Masonry/Concrete, Opaque, Latex, 3 Coat:
 - 1. One coat of block filler.
 - 2. Semi-gloss: Two coats of latex enamel; Spartashield.
- C. Paint GE-OP-3L Gypsum Board and Plaster, Opaque, Latex, 3 Coat:
 - 1. One coat of latex primer sealer.
 - 2. Flat: Two coats of latex; Spartashield.
- D. Paint ME-OP-3L Ferrous Metals, Unprimed, Latex, 3 Coat:
 - 1. One coat of latex primer, Bloc-Rust Primer.
 - Semi-gloss: Two coats of latex enamel; Spartashield.
- E. Paint ME-OP-2L Ferrous Metals, Primed, Latex, 2 Coat:
 - 1. Touch-up with rust-inhibitive primer recommended by top coat manufacturer.
 - 2. Semi-gloss: Two coats of latex enamel; Spartashield.
- F. Paint MgE-OP-3L Galvanized Metals, Latex, 3 Coat:
 - 1. One coat galvanize primer. Ultra-Grip.
 - Semi-gloss: Two coats of latex enamel; Spartashield.

2.04 PAINT SYSTEMS - INTERIOR

- A. Paint MI-OP-3L Ferrous Metals, Unprimed, Latex, 3 Coat:
 - 1. One coat of latex primer, Bloc-Rust Premium.
 - 2. Semi-gloss: Two coats of latex enamel; Spartawall.
- B. Paint MI-OP-2L Ferrous Metals, Primed, Latex, 2 Coat:
 - 1. Touch-up with latex primer.
 - 2. Semi-gloss: Two coats of latex enamel; Spartawall.
- C. Paint MgI-OP-3L Galvanized Metals, Latex, 3 Coat:
 - 1. One coat galvanize primer. Ultra-Grip Premium.
 - 2. Semi-gloss: Two coats of latex enamel; Spartawall.
- D. Paint GI-OP-3L Gypsum Board/Plaster, Latex, 3 Coat:
 - 1. One coat of latex primer sealer, Vinylastic Select.
 - Semi-gloss: Two coats of latex enamel; Spartawall.

2.05 ACCESSORY MATERIALS

- A. Accessory Materials: Provide all primers, sealers, cleaning agents, cleaning cloths, sanding materials, and clean-up materials required to achieve the finishes specified whether specifically indicated or not; commercial quality.
- B. Patching Material: Latex filler.
- C. Fastener Head Cover Material: Latex filler.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that surfaces are ready to receive work as instructed by the product manufacturer.

Lakeside Union School District

- B. Examine surfaces scheduled to be finished prior to commencement of work. Report any condition that may potentially affect proper application.
- C. Test shop-applied primer for compatibility with subsequent cover materials.
- D. Measure moisture content of surfaces using an electronic moisture meter. Do not apply finishes unless moisture content of surfaces are below the following maximums:
 - 1. Gypsum Wallboard: 12 percent.
 - 2. Plaster and Stucco: 12 percent.
 - 3. Masonry, Concrete, and Concrete Unit Masonry: 12 percent.

3.02 PREPARATION

- A. Clean surfaces thoroughly and correct defects prior to coating application.
- B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.
- C. Remove or mask surface appurtenances, including electrical plates, hardware, light fixture trim, escutcheons, and fittings, prior to preparing surfaces or finishing.
- D. Seal surfaces that might cause bleed through or staining of topcoat.
- E. Remove mildew from impervious surfaces by scrubbing with solution of tetra-sodium phosphate and bleach. Rinse with clean water and allow surface to dry.
- F. Concrete and Unit Masonry Surfaces to be Painted: Remove dirt, loose mortar, scale, salt or alkali powder, and other foreign matter. Remove oil and grease with a solution of tri-sodium phosphate; rinse well and allow to dry. Remove stains caused by weathering of corroding metals with a solution of sodium metasilicate after thoroughly wetting with water. Allow to dry.
- G. Gypsum Board Surfaces to be Painted: Fill minor defects with filler compound. Spot prime defects after repair.
- H. Plaster Surfaces to be Painted: Fill hairline cracks, small holes, and imperfections with latex patching plaster. Make smooth and flush with adjacent surfaces. Wash and neutralize high alkali surfaces.
- I. Galvanized Surfaces to be Painted: Remove surface contamination and oils and wash with solvent. Apply coat of etching primer.
- J. Uncorroded Uncoated Steel and Iron Surfaces to be Painted: Remove grease, mill scale, weld splatter, dirt, and rust. Where heavy coatings of scale are evident, remove by hand wire brushing or sandblasting; clean by washing with solvent. Apply a treatment of phosphoric acid solution, ensuring weld joints, bolts, and nuts are similarly cleaned. Prime paint entire surface; spot prime after repairs.
- K. Shop-Primed Steel Surfaces to be Finish Painted: Sand and scrape to remove loose primer and rust. Feather edges to make touch-up patches inconspicuous. Clean surfaces with solvent. Prime bare steel surfaces. Re-prime entire shop-primed item.
- L. Exterior Wood Surfaces to Receive Opaque Finish: Remove dust, grit, and foreign matter. Seal knots, pitch streaks, and sappy sections. Fill nail holes with tinted exterior calking compound after prime coat has been applied. Back prime concealed surfaces before installation.
- M. Metal Doors to be Painted: Prime metal door top and bottom edge surfaces.

3.03 APPLICATION

- A. Remove unfinished louvers, grilles, covers, and access panels on mechanical and electrical components and paint separately.
- B. Exterior Wood to Receive Opaque Finish: If final painting must be delayed more than 2 weeks after installation of woodwork, apply primer within 2 weeks and final coating within 4 weeks.
- C. Apply products in accordance with manufacturer's instructions.
- D. Where adjacent sealant is to be painted, do not apply finish coats until sealant is applied.

Lakeside Union School District

- E. Do not apply finishes to surfaces that are not dry. Allow applied coats to dry before next coat is applied.
- F. Apply each coat to uniform appearance.
- G. Dark Colors and Deep Clear Colors: Regardless of number of coats specified, apply as many coats as necessary for complete hide.
- H. Sand wood surfaces lightly between coats to achieve required finish.
- Vacuum clean surfaces of loose particles. Use tack cloth to remove dust and particles just prior to applying next coat.
- J. Reinstall electrical cover plates, hardware, light fixture trim, escutcheons, and fittings removed prior to finishing.

3.04 CLEANING

A. Collect waste material that could constitute a fire hazard, place in closed metal containers, and remove daily from site.

3.05 PROTECTION

- A. Protect finished coatings until completion of project.
- B. Touch-up damaged coatings after Substantial Completion.

Lakeside Union School District

SECTION 10 2601 WALL AND CORNER GUARDS

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Corner guards.

1.02 SUBMITTALS

- A. See Section 01 3010 Submittals, for submittal procedures.
- B. Product Data: Indicate physical dimensions, features, and anchorage details.

PART 2 PRODUCTS

2.01 COMPONENTS

- A. Corner Guards Surface Mounted:
 - 1. Material: Type 304 stainless steel, No. 4 finish, 16 gage, .0625 inch thick.
 - 2. Width of Wings: 3 inches.
 - 3. Corner: Square.
 - 4. Length: 48" one-piece.

2.02 FABRICATION

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that rough openings, concealed blocking, and anchors are correctly sized and located.

3.02 INSTALLATION

- A. Install components in accordance with manufacturer's instructions, level and plumb, secured rigidly in position to wall framing members only.
- B. Install at all outside wall corners within Kitchen.

Lakeside Union School District

SECTION 220517

SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Grout.
 - 4. Silicone sealants.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop collar.
- B. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, anticorrosion coated or galvanized, with plain ends and integral welded waterstop collar.
- C. Galvanized-Steel Sheet Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- D. PVC Pipe Sleeves: ASTM D1785, Schedule 40.

2.2 SLEEVE-SEAL SYSTEMS

A. Description:

- 1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
- 2. Designed to form a hydrostatic seal of 20 psig (137 kPa) minimum.
- 3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

Lakeside Union School District

- 4. Pressure Plates: Carbon steel.
- 5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B633 of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.4 SILICONE SEALANTS

- A. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant, ASTM C920, Type S, Grade NS, Class 25, Use NT.
- B. Silicone, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade P, Class 25, Uses T and NT. Grade P Pourable (self-leveling) formulation is for opening in floors and other horizontal surfaces that are not fire rated.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level.
 - 2. Using grout or silicone sealant, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.

Lakeside Union School District

- 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.
- E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.
- B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Cast-iron pipe sleeves.
 - b. Piping NPS 6 (DN 150) and Larger: Cast-iron pipe sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 (DN 150) and Larger: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

Lakeside Union School District

- 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 (DN 150) and Larger: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
- 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Steel pipe sleeves.
 - b. Piping NPS 6 (DN 150 and Larger: Steel pipe sleeves.
- 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6 (DN 150): Steel pipe sleeves.
 - b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel sheet sleeves.

Lakeside Union School District

SECTION 220518

ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Steel Type: With polished, chrome-plated finish and setscrew fastener.

2.2 FLOOR PLATES

A. Split Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping and Relocated Existing Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep pattern.
 - b. Chrome-Plated Piping: One-piece cast brass with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece steel with polished, chrome-plated finish.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece steel with polished, chrome-plated finish.
 - e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece steel with polished, chrome-plated finish.

Lakeside Union School District

- 2. Escutcheons for Existing Piping to Remain:
 - a. Chrome-Plated Piping: Split-casting, stamped steel with concealed hinge with polished, chrome-plated finish.
 - b. Insulated Piping: Split-plate, stamped steel with concealed hinge with polished, chrome-plated finish
 - c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 - d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping and Relocated Existing Piping: Split floor plate.

3.2 FIELD QUALITY CONTROL

A. Using new materials, replace broken and damaged escutcheons and floor plates.

Lakeside Union School District

SECTION 220523.12

BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Brass ball valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Standards:

 Domestic water valves intended to convey or dispense water for human consumption must comply with the SDWA, requirements of authorities having jurisdiction, and NSF 61 and NSF 372, or must be certified to be in compliance with NSF 61 and NSF 372 (by an ANSI-accredited third-party certification body) that the weighted average lead content at wetted surfaces is less than or equal to 0.25 percent.

B. ASME Compliance:

- 1. ASME B1.20.1 for threads for threaded end valves.
- 2. ASME B16.1 for flanges on iron valves.
- 3. ASME B16.5 for flanges on steel valves.
- ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
- 5. ASME B16.18 for cast copper solder-joint connections.
- 6. ASME B16.22 for wrought copper and copper alloy solder-joint connections.
- 7. ASME B16.34 for flanged and threaded end connections
- 8. ASME B31.9 for building services piping valves.
- C. Provide bronze valves made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- D. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- E. Valve Sizes: Same as upstream piping unless otherwise indicated.
- F. Valve Actuator Type:

Lakeside Union School District

- 1. Gear Actuator: For quarter-turn valves NPS 4 (DN 100) and larger.
- 2. Hand Lever: For quarter-turn valves smaller than NPS 4 (DN 100).
- G. Valves in Insulated Piping:
 - 1. Provide 2-inch (50-mm) extended neck stems.
 - 2. Extended operating handles with nonthermal-conductive covering material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 - 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRASS BALL VALVES

- A. Brass Ball Valves, Two Piece with Full Port and Brass Trim, Threaded or Soldered Ends:
 - Standard: MSS SP-110; MSS SP-145.
 - 2. CWP Rating: 600 psig (4140 kPa).
 - 3. Body Design: Two piece.
 - 4. Body Material: Forged brass.
 - 5. Ends: Threaded or soldered.
 - 6. Seats: PTFE.
 - 7. Stem: Brass.
 - 8. Ball: Chrome-plated brass.
 - 9. Port: Full.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves. Remove defective valves from site.

3.2 INSTALLATION OF VALVES

- A. Install valves with unions or flanges at each piece of equipment arranged to allow space for service, maintenance, and equipment removal without system shutdown.
- B. Provide support to piping adjacent to valves such that no force is imposed upon valves.

Lakeside Union School District

- C. Locate valves for easy access.
- D. For valves in horizontal piping, install valves with stem at or above center of pipe.
- E. Install valves in position to allow full valve actuation movement.
- F. Valve Tags: Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
- G. Adhere to manufacturer's written installation instructions. When soldering or brazing valves, do not heat valves above maximum permitted temperature. Do not use solder with melting point temperature above valve manufacturer's recommended maximum.
- H. Adjust or replace valve packing after piping systems have been tested and put into service, but before final adjusting and balancing. Replace valves exhibiting leakage.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valves with specified CWP ratings are unavailable, provide the same types of valves with higher CWP ratings.
- B. Select valves with the following end connections:
 - 1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Threaded ends except where solder-joint valve-end option or press-end option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 (DN 125) and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 (DN 50) and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 6. For Steel Piping, NPS 5 (DN 125) and Larger: Flanged ends.

3.4 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 (DN 50) and Smaller:
 - Brass ball valves, two piece with full port, and brass trim. Provide with threaded or solderjoint ends.
- B. Pipe NPS 2-1/2 (DN 65) and Larger:
 - 1. Steel and Iron Valves, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): May be provided with threaded ends instead of flanged ends.
 - 2. Steel ball valves, Class 150 with full port.

Lakeside Union School District

SECTION 220529

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Thermal hanger-shield inserts.
 - 4. Fastener systems.
 - 5. Pipe-positioning systems.
 - 6. Equipment supports.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show fabrication and installation details and include calculations.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
- B. Pipe Welding Qualifications: Qualify procedures and operators according to "2015 ASME Boiler and Pressure Vessel Code, Section IX."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.

Lakeside Union School District

- B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

2.2 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pre galvanized, hot-dip galvanized, or electro-galvanized.
 - 3. Nonmetallic Coatings: Plastic coated or epoxy powder coated.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Stainless-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.
- C. Copper Pipe and Tube Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made ofstainless steel.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly, made from structural-carbon-steel shapes, with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 THERMAL HANGER-SHIELD INSERTS

- A. Insulation-Insert Material for Hot Piping
- B. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- C. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

Lakeside Union School District

D. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type anchors, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Indoor Applications: Stainless steel.
 - 2. Outdoor Applications: Stainless steel.

2.6 PIPE-POSITIONING SYSTEMS

A. Description: IAPMO PS 42 positioning system composed of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.7 MATERIALS

- A. Aluminum: ASTM B221 (ASTM B221M).
- B. Carbon Steel: ASTM A1011/A1011M.
- C. Structural Steel: ASTM A36/A36M carbon-steel plates, shapes, and bars; black and galvanized.
- D. Stainless Steel: ASTM A240/A240M.
- E. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation, for penetrations through fire-rated walls, ceilings, and assemblies.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

Lakeside Union School District

3.2 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size, or install intermediate supports for smaller-diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A36/A36M carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.
- D. Fastener System Installation:
 - Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete, after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete, after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- E. Pipe-Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65)and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- M. Insulated Piping:
 - 1. Attach clamps and spacers to piping.

Lakeside Union School District

- a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.
- b. Piping Operating Below Ambient Air Temperature: Use thermal hanger-shield insert with clamp sized to match OD of insert.
- c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39 protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 - b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 - c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
 - NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches (610 mm) long and 0.075 inch (1.91 mm) thick.
 - e. NPS 16 to NPS 24 (DN 400 to DN 600): 24 inches (610 mm) long and 0.105 inch (2.67 mm) thick.
- 5. Pipes NPS 8 (DN 200) and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal Hanger Shields: Install with insulation of same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment, and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work.

Lakeside Union School District

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).

3.6 PAINTING

- A. Touchup: Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal hanger-shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F (566 deg C) pipes NPS 4 to NPS 24 (DN 100 to DN 600), requiring up to 4 inches (100 mm) of insulation.

Lakeside Union School District

- 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36 (DN 20 to DN 900), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.
- 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 (DN 15 to DN 600) if little or no insulation is required.
- 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4 (DN 15 to DN 100), to allow off-center closure for hanger installation before pipe erection.
- 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8 (DN 20 to DN 200).
- 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8 (DN 15 to DN 200).
- 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8 (DN 15 to DN 200).
- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8 (DN 15 to DN 200).
- 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8 (DN 10 to DN 200).
- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3 (DN 10 to DN 80).
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
- Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 (DN 65 to DN 900) if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30 (DN 25 to DN 750), from two rods if longitudinal movement caused by expansion and contraction occurs.
- Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24 (DN 65 to DN 600), from single rod if horizontal movement caused by expansion and contraction occurs.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 (DN 50 to DN 1050) if longitudinal movement caused by expansion and contraction occurs but vertical adjustment is unnecessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 (DN 50 to DN 600) if small horizontal movement caused by expansion and contraction occurs and vertical adjustment is unnecessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 (DN 50 to DN 750) if vertical and lateral adjustment during installation, in addition to expansion and contraction, is required.
- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24 (DN 24 to DN 600).
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 (DN 20 to DN 600) if longer ends are required for riser clamps.

Lakeside Union School District

- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - Steel Turnbuckles (MSS Type 13): For adjustment of up to 6 inches (150 mm) for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11 split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F (49 to 232 deg C) piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb (340 kg).
 - b. Medium (MSS Type 32): 1500 lb (680 kg).
 - c. Heavy (MSS Type 33): 3000 lb (1360 kg).
 - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 - 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.

Lakeside Union School District

- O. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- P. Use pipe-positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

Lakeside Union School District

SECTION 220553

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: stainless steel, 0.025-inch (0.64-mm) minimum thickness, with predrilled or stamped holes for attachment hardware.
 - 2. Letter and Background Color: As indicated for specific application under Part 3.
 - 3. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 - 4. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances of up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 5. Fasteners: Stainless steel rivets or self-tapping screws.
 - 6. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch (1.6 mm) thick, with predrilled holes for attachment hardware.
- B. Letter and Background Color: As indicated for specific application under Part 3.
- C. Maximum Temperature: Able to withstand temperatures of up to 160 deg F (71 deg C).

Lakeside Union School District

- D. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
- E. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances of up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- F. Fasteners: Stainless steel rivets or self-tapping screws.
- G. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- H. Arc-Flash Warning Signs: Provide arc-flash warning signs in locations and with content in accordance with requirements of OSHA and NFPA 70E, and other applicable codes and standards.
- I. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color coded, with lettering indicating service and showing flow direction in accordance with ASME A13.1.
- B. Letter and Background Color: As indicated for specific application under Part 3.
- C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.
- D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings. Also include:
 - 1. Pipe size.
 - 2. Flow-Direction Arrows: Include flow-direction arrows on main distribution piping. Arrows may be either integral with label or applied separately.
 - 3. Lettering Size: Size letters in accordance with ASME A13.1 for piping At least 1/2 inch (13 mm) for viewing distances of up to 72 inches (1830 mm) and proportionately larger lettering for greater viewing distances.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

Lakeside Union School District

3.2 INSTALLATION, GENERAL REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.
- D. Locate identifying devices so that they are readily visible from the point of normal approach.

3.3 INSTALLATION OF EQUIPMENT LABELS, WARNING SIGNS, AND LABELS

- A. Permanently fasten labels on each item of plumbing equipment.
- B. Sign and Label Colors.
 - 1. White letters on an ANSI Z535.1 safety-green background.
- C. Locate equipment labels where accessible and visible.
- D. Arc-Flash Warning Signs: Provide arc-flash warning signs on electrical disconnects and other equipment where are-flash hazard exists, as indicated on Drawings, and in accordance with requirements of OSHA and NFPA 70E, and other applicable codes and standards.

3.4 INSTALLATION OF PIPE LABELS

- A. Piping Color Coding: Painting of piping is specified in Section 099123 "Interior Painting.
- B. Install pipe labels showing service and flow direction with permanent adhesive on pipes.
- C. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Within 3 ft. (1 m) of each valve and control device.
 - 2. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 3. Within 3 ft. (1 m) of equipment items and other points of origination and termination.
 - 4. Spaced at maximum intervals of 25 ft. (8 m) along each run. Reduce intervals to 10 ft. (3 m) in areas of congested piping and equipment.
- D. Do not apply plastic pipe labels or plastic tapes directly to bare pipes conveying fluids at temperatures of 125 deg F (52 deg C) or higher. Where these pipes are to remain uninsulated, use a short section of insulation or use stenciled labels.
- E. Flow-Direction Flow Arrows: Use arrows, in compliance with ASME A13.1, to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.
- F. Pipe-Label Color Schedule:
 - 1. Domestic Cold-Water Piping: White letters on an ANSI Z535.1 safety-green background.
 - 2. Domestic Hot-Water Piping: White letters on an ANSI Z535.1 safety-green background

Lakeside Union School District

- Domestic Hot-Water Return Piping White letters on an ANSI Z535.1 safety-green 3. background.
 Sanitary Waste Piping: White letters on a black background
- 4.

END OF SECTION

Lakeside Union School District

SECTION 220719

PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Domestic hot-water piping.
 - 2. Domestic recirculating hot-water piping.
 - 3. Supplies and drains for handicap-accessible lavatories and sinks.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material test reports.
- C. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Supply and Drain Protective Shielding Guards: ICC A117.1.

1.5 COORDINATION

A. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.6 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

Lakeside Union School District

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products in accordance with ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation, jacket materials, adhesive, mastic, tapes, and cement material containers with appropriate markings of applicable testing agency.
 - 1. All Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. All Insulation Installed Indoors; Outdoors-Installed Insulation in Contact with Airstream: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 3. All Insulation Installed Indoors and Outdoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2.2 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come into contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable in accordance with ASTM C795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Glass-Fiber, Preformed Pipe: Glass fibers bonded with a thermosetting resin; suitable for maximum use temperature up to 850 deg F (454 deg C) in accordance with ASTM C411. Comply with ASTM C547.
 - 1. Preformed Pipe Insulation: Type I, Grade A, with factory-applied ASJ-SSL.
 - 2. Fabricated shapes in accordance with ASTM C450 and ASTM C585.
 - 3. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Glass-Fiber and Mineral Wool Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
- C. ASJ Adhesive and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A, for bonding insulation jacket lap seams and joints.

Lakeside Union School District

2.4 MASTICS AND COATINGS

- A. Materials shall be compatible with insulation materials, jackets, and substrates.
- B. Vapor-Retarder Mastic, Water Based: Suitable for indoor use on below-ambient services.
 - 1. Water-Vapor Permeance: Comply with ASTM E96/E96M or ASTM F1249.
 - 2. Service Temperature Range: 0 to plus 180 deg F (Minus 18 to plus 82 deg C).
 - 3. Comply with MIL-PRF-19565C, Type II, for permeance requirements, with supplier listing on DOD QPD Qualified Products Database.
 - 4. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Water-Vapor Permeance: ASTM E96/E96M, greater than 1.0 perm (0.66 metric perms) at manufacturer's recommended dry film thickness.
 - 2. Service Temperature Range: 0 to plus 180 deg F (Minus 18 to plus 82 deg C).
 - 3. Color: White.

2.5 SEALANTS

- A. Materials shall be as recommended by the insulation manufacturer and shall be compatible with insulation materials, jackets, and substrates.
- B. Joint Sealants:
 - 1. Permanently flexible, elastomeric sealant.
 - 2. Service Temperature Range: Minus 58 to plus 176 deg F (Minus 50 to plus 80 deg C).
 - 3. Color: White or gray.
- C. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:
 - 1. Fire- and water-resistant, flexible, elastomeric sealant.
 - 2. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 3. Color: White.

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.

2.7 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 - 1. Width: 3 inches (75 mm).
 - 2. Thickness: 11.5 mils (0.29 mm).
 - 3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

Lakeside Union School District

2.8 SECUREMENTS

- A. Bands:
 - 1. Stainless Steel: ASTM A240/A240M, Type 304 or Type 316; 0.015 inch (0.38 mm) thick, 1/2 inch (13 mm) wide with wing seal or closed seal.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
- C. Wire: 0.080-inch (2.0-mm) nickel-copper alloy.

2.9 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
 - Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.
- B. Protective Shielding Piping Enclosures:
 - 1. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils (0.127 mm) thick and an epoxy finish 5 mils (0.127 mm) thick if operating in a temperature range of between 140 and 300 deg F (60 and 149 deg C). Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature of between 32 and 300 deg F (0 and 149 deg C) with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the tradesman installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.

Lakeside Union School District

- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and of thicknesses required for each item of pipe system, as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, compress, or otherwise damage insulation or jacket.
- D. Install insulation with longitudinal seams at top and bottom (12 o'clock and 6 o'clock positions) of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet during storage or in the installation process before being properly covered and sealed in accordance with the contract documents, unless otherwise approved by the engineer-of-record.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.
 - 3. Install insert materials and insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth, but not to the extent of creating wrinkles or areas of compression in the insulation.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward-clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward-clinching staples along edge at 4 inches (100 mm) o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.

Lakeside Union School District

- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

Lakeside Union School District

- 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials, except where more specific requirements are specified in various pipe insulation material installation articles below.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, Mechanical Couplings, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, mechanical couplings, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered or routed fittings made from same material and density as that of adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as that used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as that used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers, so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges, mechanical couplings, and unions, using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Stencil or label the outside insulation jacket of each union with the word "union" matching size and color of pipe labels.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket, except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing, using PVC tape.

Lakeside Union School District

- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as that of adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union at least 2 times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 INSTALLATION OF GLASS-FIBER AND MINERAL WOOL INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches (150 mm) o.c.
 - 4. For insulation with jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive, as recommended by insulation material manufacturer, and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install prefabricated pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with glass-fiber or mineral-wool blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:

Lakeside Union School District

- 1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
- 2. When prefabricated insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
 - 2. When prefabricated sections are not available, install fabricated sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.6 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless steel jackets.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections: Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective if they do not pass tests and inspections.

Lakeside Union School District

3.8 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - Underground piping.
 - 2. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.9 INDOOR PIPING INSULATION SCHEDULE

- A. Domestic Hot and Recirculated Hot Water:
 - 1. NPS 1-1/4 (DN 32) and Smaller: Insulation shall be one of the following:
 - a. Glass-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.
 - 2. NPS 1-1/2 (DN 40) and Larger: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inch (25 mm) thick.
 - b. Glass-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.
- B. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Glass-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.

3.10 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Domestic Hot and Recirculated Hot Water:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Glass-Fiber, Preformed Pipe Insulation, Type I: 2 inches (50 mm) thick.

END OF SECTION

Lakeside Union School District

SECTION 221116

DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Copper tube and fittings.
 - 2. Piping joining materials.
 - 3. Transition fittings.
 - 4. Dielectric fittings.

1.2 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

1.3 INFORMATIONAL SUBMITTALS

A. System purging and disinfecting activities report.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- B. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372. Include marking "NSF-pw" on piping.

2.2 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tube: ASTM B88, Type L (ASTM B88M, Type B).
- B. Annealed-Temper Copper Tube: ASTM B88, Type K (ASTM B88M, Type A).
- C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
- D. Wrought-Copper, Solder-Joint Fittings: ASME B16.22, pressure fittings.
- E. Cast Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces and solder-joint or threaded ends.
- F. Wrought Copper Unions: ASME B16.22.

Lakeside Union School District

2.3 PIPING JOINING MATERIALS

- A. Solder Filler Metals: ASTM B32, lead-free alloys.
- B. Flux: ASTM B813, water flushable.
- C. Brazing Filler Metals: AWS A5.8M/A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.4 TRANSITION FITTINGS

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

2.5 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Standard: ASSE 1079.
 - 2. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C).
 - 3. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Nipples:
 - 1. Standard: IAPMO PS 66.
 - 2. Electroplated steel nipple complying with ASTM F1545.
 - 3. Pressure Rating and Temperature: 300 psig (2070 kPa) at 225 deg F (107 deg C).
 - 4. End Connections: Male threaded or grooved.
 - 5. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Unions may be used for aboveground piping joints unless otherwise indicated.
- C. Under-building-slab, domestic water piping, NPS 2 (DN 50) and smaller, shall be the following:
 - Annealed copper tube, ASTM B88, Type K; and brazed joints wrapped in PE.
- D. Aboveground domestic water piping, NPS 2 (DN 50) and smaller, shall be the following:

Lakeside Union School District

- 1. Hard copper tube, ASTM B88, Type L (ASTM B88M, Type B) wrought-copper, solder-joint fittings; and soldered joints.
- E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100) shall be the following:
 - 1. Hard copper tube, ASTM B88, Type L (ASTM B88M, Type B); wrought-copper, solder-joint fittings; and soldered joints.

3.2 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.3 INSTALLATION OF PIPING

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.
- D. Install valves according to the following:
 - 1. Section 220523.12 "Ball Valves for Plumbing Piping."
- E. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."
- F. Install domestic water piping level without pitch and plumb.
- G. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- H. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- I. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- J. Install piping to permit valve servicing.
- K. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- L. Install piping free of sags and bends.

Lakeside Union School District

- M. Install fittings for changes in direction and branch connections.
- N. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- O. Install pressure gauges on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gauges in Section 220519 "Meters and Gages for Plumbing Piping."
- P. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 221123 "Domestic Water Pumps."
- Q. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."
- R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.4 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.
- E. Soldered Joints for Copper Tubing: Apply ASTM B813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B828 or CDA's "Copper Tube Handbook."
- F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.
- G. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

Lakeside Union School District

- H. Joint Construction for Solvent-Cemented Plastic Piping: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F402 for safe-handling practice of cleaners, primers, and solvent cements. Apply primer.
 - 2. CPVC Piping: Join according to ASTM D2846/D2846M Appendix.
 - 3. PVC Piping: Join according to ASTM D2855.
- I. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.5 INSTALLATION OF TRANSITION FITTINGS

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
 - 1. Fittings for NPS 1-1/2 (DN 40) and Smaller: Fitting-type coupling.
 - 2. Fittings for NPS 2 (DN 50) and Larger: Sleeve-type coupling.

3.6 INSTALLATION OF DIELECTRIC FITTINGS

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 (DN 50) and Smaller: Use dielectric couplings or nipples.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Use dielectric nipples.
- D. Dielectric Fittings for NPS 5 (DN 125) and Larger: Use dielectric flange kits.

3.7 INSTALLATION OF HANGERS AND SUPPORTS

- A. Comply with requirements for hangers, supports, and anchor devices in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- B. Install hangers for copper and galvanized steel tubing and piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- C. Support horizontal piping within 12 inches (300 mm) of each fitting.
- D. Support vertical runs of copper ductile iron galvanized steel and stainless steel tubing and piping to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- E. Support vertical runs of PEX tubing to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.8 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

Lakeside Union School District

- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 - 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 (DN 65) and larger.

3.9 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

3.10 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.

Lakeside Union School District

- b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 - 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
- c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
- d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:

- a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
- b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
- c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- d. Cap and subject piping to static water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
- e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
- f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.12 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm (50 mg/L) of chlorine. Isolate with valves and allow to stand for 24 hours.

Lakeside Union School District

- 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm (200 mg/L) of chlorine. Isolate and allow to stand for three hours.
- c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
- d. Repeat procedures if biological examination shows contamination.
- e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.
- C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

END OF SECTION

Lakeside Union School District

SECTION 221316

SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Hubless, cast-iron soil pipe and fittings.
 - 2. PVC pipe and fittings.
 - 3. Specialty pipe fittings.

1.2 ACTION SUBMITTALS

A. Product data.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Components and installation are capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10 ft. head of water (30 kPa head of water).

2.2 PIPING MATERIALS

- A. Piping materials to bear label, stamp, or other markings of specified testing agency.
- B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings:
 - Marked with CISPI collective trademark.
 - ASTM A888 or CISPI 301.
- B. CISPI, Hubless-Piping Couplings:
 - Standards: ASTM C1277 and CISPI 310.
 - 2. Description: Stainless steel corrugated shield with stainless steel bands and tightening devices; and ASTM C564, rubber sleeve with integral, center pipe stop.
- C. Heavy-Duty, Hubless-Piping Couplings:
 - Standards: ASTM C1277 and ASTM C1540.

Lakeside Union School District

2. Description: Stainless steel shield with stainless steel bands and tightening devices; and ASTM C564, rubber sleeve with integral, center pipe stop.

2.4 PVC PIPE AND FITTINGS

- A. Comply with NSF 14 for plastic piping components. Include "NSF-dwv" marking for plastic drain, waste, and vent piping and "NSF-sewer" marking for plastic sewer piping.
- B. Solid-Wall PVC Pipe: ASTM D2665 drain, waste, and vent.
- C. PVC Socket Fittings: ASTM D2665, made in accordance with ASTM D3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- D. Adhesive Primer: ASTM F656.
- E. Solvent Cement: ASTM D2564.

2.5 SPECIALTY PIPE FITTINGS

- A. Transition Couplings:
 - General Requirements: Fitting or device for joining piping with small differences in ODs or of different materials. Include end connections of same size as and compatible with pipes to be joined.
 - 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 - 3. Unshielded, Nonpressure Transition Couplings:
 - a. Standard: ASTM C1173.
 - b. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - c. End Connections: Same size as and compatible with pipes to be joined.
 - d. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C564, rubber.
 - 2) For Plastic Pipes: ASTM F477, elastomeric seal or ASTM D5926 PVC.
 - 3) For Dissimilar Pipes: ASTM D5926 PVC or other material compatible with pipe materials being joined.
 - 4. Shielded, Nonpressure Transition Couplings:
 - Standard: ASTM C1460.
 - b. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - c. End Connections: Same size as and compatible with pipes to be joined.

Lakeside Union School District

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.
 - 1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
 - 2. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends.
 - 1. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 - 2. Use long-turn, double Y-branch, and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe.
 - a. Straight tees, elbows, and crosses may be used on vent lines.
 - 3. Do not change direction of flow more than 90 degrees.
 - 4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.
 - a. Reducing size of waste piping in direction of flow is prohibited.
- K. Lay buried building waste piping beginning at low point of each system.

Lakeside Union School District

- 1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
- 2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
- 3. Maintain swab in piping and pull past each joint as completed.
- L. Install soil and waste and vent piping at the following minimum slopes unless otherwise indicated:
 - Building Sanitary Waste: Two percent downward in direction of flow for piping NPS 3 (DN 80) and smaller; 2 percent downward in direction of flow for piping NPS 4 (DN 100) and larger.
 - 2. Horizontal Sanitary Waste Piping: Two percent downward in direction of flow.
 - 3. Vent Piping: Down toward vertical fixture vent or toward vent stack.
- M. Install cast-iron soil piping in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- N. Install aboveground PVC piping in accordance with ASTM D2665.
- O. Install underground PVC piping in accordance with ASTM D2321.
- P. Plumbing Specialties:
 - 1. Install backwater valves in sanitary waster gravity-flow piping.
 - a. Comply with requirements for backwater valves specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary waste gravity-flow piping.
 - a. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping.
 - b. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 3. Install drains in sanitary waste gravity-flow piping.
 - a. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."
- Q. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- R. Install sleeves for piping penetrations of walls, ceilings, and floors.
 - 1. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- S. Install sleeve seals for piping penetrations of concrete walls and slabs.
 - 1. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

Lakeside Union School District

- T. Install escutcheons for piping penetrations of walls, ceilings, and floors.
 - Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Hubless, Cast-Iron Soil Piping Coupled Joints:
 - 1. Join hubless, cast-iron soil piping in accordance with CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
- B. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings in accordance with the following:
 - 1. Comply with ASTM F402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Piping: Join in accordance with ASTM D2855 and ASTM D2665 appendixes.
- C. Joint Restraints and Sway Bracing:
 - 1. Provide joint restraints and sway bracing for storm drainage piping joints to comply with the following conditions:
 - a. Provide axial restraint for pipe and fittings 5 inches (125 mm) and larger, upstream and downstream of all changes in direction, branches, and changes in diameter greater than two pipe sizes.
 - b. Provide rigid sway bracing for pipe and fittings 4 inches (100 mm) and larger, upstream and downstream of all changes in direction 45 degrees and greater.
 - c. Provide rigid sway bracing for pipe and fittings 5 inches (125 mm) and larger, upstream and downstream of all changes in direction and branch openings.

3.4 SPECIALTY PIPE FITTING INSTALLATION

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in ODs.
 - 2. In Waste Drainage Piping: Shielded, nonpressure transition couplings.

3.5 INSTALLATION OF HANGERS AND SUPPORTS

- A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment".
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install stainless steel pipe hangers for horizontal piping in corrosive environments.
 - 3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 4. Install stainless steel pipe support clamps for vertical piping in corrosive environments.
 - 5. Vertical Piping: MSS Type 8 or Type 42 clamps.
 - 6. Install individual, straight, horizontal piping runs:
 - a. 100 Ft. (30 m) and Less: MSS Type 1, adjustable, steel clevis hangers.

Lakeside Union School District

- b. Longer Than 100 Ft. (30 m): MSS Type 43, adjustable roller hangers.
- c. Longer Than 100 Ft. (30 m) if Indicated: MSS Type 49, spring cushion rolls.
- 7. Multiple, Straight, Horizontal Piping Runs 100 Ft. (30 m) or Longer: MSS Type 44 pipe rolls. Support pipe rolls on trapeze.
- 8. Base of Vertical Piping: MSS Type 52 spring hangers.
- B. Install hangers for cast-iron soil piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- C. Install hangers for PVC piping, with maximum horizontal spacing and minimum rod diameters, to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- D. Support horizontal piping and tubing within 12 inches (300 mm) of each fitting, valve, and coupling.
- E. Support vertical runs of cast-iron soil piping to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- F. Support vertical runs of PVC piping to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect waste and vent piping to the following:
 - 1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
- D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- E. Make connections in accordance with the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.

Lakeside Union School District

3.7 IDENTIFICATION

- A. Identify exposed sanitary waste and vent piping.
- B. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary waste and vent piping in accordance with procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.
 - a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.
 - a. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.
 - a. Close openings in piping system and fill with water to point of overflow, but not less than 10 ft. head of water (30 kPa head of water).
 - b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.
 - c. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.
 - a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1 inch wg (250 Pa).
 - b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
 - c. Air pressure must remain constant without introducing additional air throughout period of inspection.

Lakeside Union School District

- d. Inspect plumbing fixture connections for gas and water leaks.
- 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
- 6. Prepare reports for tests and required corrective action.

3.9 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.
- D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.
- E. Repair damage to adjacent materials caused by waste and vent piping installation.

3.10 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Aboveground, soil and waste piping NPS 4 (DN 100) and smaller are to be the following:
 - 1. Hubless, cast-iron soil pipe and fittings and hubless, single-stack aerator fittings; CISPI heavy duty hubless-piping couplings; and coupled joints.
 - 2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- C. Aboveground, soil and waste piping NPS 5 (DN 125) and larger are to be the following:
 - 1. Hubless, cast-iron soil pipe and fittings and hubless, single-stack aerator fittings; CISPI heavy-duty hubless-piping couplings; and coupled joints.
 - 2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- D. Aboveground, vent piping NPS 4 (DN 100) and smaller is to be the following:
 - 1. Hubless, cast-iron soil pipe and fittings; CISPI heavy-duty hubless-piping couplings; and coupled joints.
 - 2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- E. Aboveground, vent piping NPS 5 (DN 125) and larger is to be the following:
 - 1. Hubless, cast-iron soil pipe and fittings; CISPI heavy-duty hubless-piping couplings; and coupled joints.
 - 2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- F. Underground, soil, waste, and vent piping NPS 4 (DN 100) and smaller are to be the following:
 - 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- G. Underground, soil and waste piping NPS 5 (DN 125) and larger are to be the following:
 - 1. Solid-wall PVC pipe. PVC socket fittings, and solvent-cemented joints.
 - 2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.

Lakeside Union School District

END OF SECTION

Lakeside Union School District

SECTION 221323

SANITARY WASTE INTERCEPTORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Grease interceptors.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of plastic interceptor.
- B. Shop Drawings: For each type and size of precast-concrete interceptor indicated.
 - 1. Include materials of construction, dimensions, rated capacities, retention capacities, location and size of each pipe connection, furnished specialties, and accessories.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Interceptors, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Piping connections. Include size, location, and elevation of each.
 - 2. Interface with underground structures and utility services.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 FIELD CONDITIONS

- A. Interruption of Existing Sewer Services: Do not interrupt services to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sewer services according to requirements indicated:
 - 1. Notify Architect no fewer than seven days in advance of proposed interruption of service.
 - 2. Do not proceed with interruption of sewer services without Architect's written permission.

Lakeside Union School District

PART 2 - PRODUCTS

2.1 GREASE INTERCEPTORS

- A. Plastic Grease Interceptors, see GI-1:
 - Standard: PDI G101 and ASME A112.14.3, for intercepting and retaining FOG from foodpreparation wastewater.
 - 2. Body Material: Plastic.
 - 3. Body Dimensions: 62" x 96" x 68" [W x L x H].
 - 4. Body Extension: Required.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 INSTALLATION

- A. Equipment Mounting:
 - 1. Install grease interceptors on cast-in-place concrete equipment base(s).
 - 2. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
- B. Install precast concrete interceptors according to ASTM C891.
- C. Set interceptors level and plumb.
- D. Install manhole risers from top of underground concrete interceptors to manholes and gratings at finished grade.
- E. Set tops of manhole frames and covers flush with finished surface in pavements.
 - 1. Set tops 3 inches (75 mm) above finish surface elsewhere unless otherwise indicated.
- F. Set tops of grating frames and grates flush with finished surface.
- G. Set plastic interceptors level and plumb.
- H. Install grease interceptors, including trapping, venting, and flow-control fitting, according to authorities having jurisdiction and with clear space for servicing.
 - 1. Above-Floor Installation: Set unit with bottom resting on floor unless otherwise indicated.
 - 2. Flush with Floor Installation: Set unit and extension, if required, with cover flush with finished floor.
 - 3. Recessed Floor Installation: Set unit in receiver housing having bottom or cradle supports, with receiver housing cover flush with finished floor.
 - 4. Install cleanout immediately downstream from interceptors not having integral cleanout on outlet.

Lakeside Union School District

3.3 PIPING CONNECTIONS

- A. Piping installation requirements are specified in Section 221316 "Sanitary Waste and Vent Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Make piping connections between interceptors and piping systems.

3.4 IDENTIFICATION

- A. Identification materials and installation are specified in Section 312000 "Earth Moving."
 - 1. Arrange for installation of green warning tapes directly over piping and at outside edges of underground interceptors.
 - 2. Use warning tapes or detectable warning tape over ferrous piping.
 - 3. Use detectable warning tape over nonferrous piping and over edges of underground structures.
- B. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Grease interceptors.
 - 2. Grease-removal devices.
 - 3. Oil interceptors.
 - 4. Solids interceptors.

3.5 PROTECTION

- A. Protect sanitary waste interceptors from damage during construction period.
- B. Repair damage to adjacent materials caused by sanitary waste interceptor installation.

END OF SECTION

Lakeside Union School District

SECTION 223300

ELECTRIC, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Commercial, electric, storage, domestic-water heaters.
 - Domestic-water heater accessories.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Include diagrams for power, signal, and control wiring.
- C. Seismic Qualification Data: Certificates, for commercial domestic-water heaters, accessories, and components, from manufacturer.
- D. Product Certificates: For each type of commercial, electric, domestic-water heater.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.5 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of electric, domestic-water heaters that fail in materials or workmanship within specified warranty period.

Verify available warranties and warranty periods for units and components.

- 1. Warranty Periods: From date of Substantial Completion.
 - a. Commercial, Electric, Storage, Domestic-Water Heaters:
 - 1) Storage Tank: Ten years.
 - 2) Controls and Other Components: Three years.
 - b. Expansion Tanks: Five years.

Lakeside Union School District

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and use.
- B. Seismic Performance: Commercial, electric, domestic-water heaters shall withstand the effects of earthquake motions determined in accordance with ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Component Importance Factor: 1.5.
- C. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1.
- D. ASME Compliance: Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- E. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 and NSF 372.

2.2 COMMERCIAL, ELECTRIC, DOMESTIC-WATER HEATERS

- A. Commercial, Electric, Storage, Domestic-Water Heaters:
 - 1. As noted on Plumbing Equipment Schedule or Equal
 - 2. Standard: UL 1453.
 - 3. Storage-Tank Construction: ASME-code, steel vertical arrangement.
 - a. Tappings: Factory fabricated of materials compatible with tank and piping connections. Attach tappings to tank before testing.
 - 1) NPS 2 (DN 50) and Smaller: Threaded ends in accordance with ASME B1.20.1.
 - 2) NPS 2-1/2 (DN 65) and Larger: Flanged ends in accordance with ASME B16.5 for steel and stainless steel flanges, and in accordance with ASME B16.24 for copper and copper-alloy flanges.
 - b. Pressure Rating: 150 psig (1035 kPa).
 - c. Interior Finish: Comply with NSF 61 and NSF 372 barrier materials for potable-water tank linings, including extending lining material into tappings.
 - 4. Factory-Installed, Storage-Tank Appurtenances:
 - a. Anode Rod: Replaceable magnesium.
 - b. Drain Valve: Corrosion-resistant metal with hose-end connection.
 - c. Insulation: Comply with ASHRAE/IES 90.1.
 - d. Jacket: Steel with enameled finish or high-impact composite material.
 - e. Heating Elements: Electric, screw-in or bolt-on immersion type arranged in multiples of three.

Lakeside Union School District

- f. Temperature Control: Adjustable thermostat.
- g. Safety Controls: High-temperature-limit and low-water cutoff devices or systems.
- h. Relief Valves: ASME rated and stamped for combination temperature-andpressure relief valves. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than workingpressure rating of domestic-water heater. Select one relief valve with sensing element that extends into storage tank.
- 5. Special Requirements: NSF 5 construction.

2.3 DOMESTIC-WATER HEATER ACCESSORIES

- A. Domestic-Water Expansion Tanks:
 - 1. As noted on Plumbing Equipment Schedule or Equal
 - 2. Description: Steel pressure-rated tank constructed with welded joints and factory-installed, butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
 - 3. Construction:
 - a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 - b. Interior Finish: Comply with NSF 61 and NSF 372 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 - c. Air-Charging Valve: Factory installed.
- B. Drain Pans: Corrosion-resistant metal with raised edge. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 (DN 20) with ASME B1.20.1 pipe threads.
- C. Piping-Type Heat Traps: Field-fabricated piping arrangement in accordance with ASHRAE/IES 90.1.
- D. Heat-Trap Fittings: ASHRAE/IES 90.1.
- E. Pressure-Reducing Valves: ASSE 1003 for water. Set at 25-psig- (172.5-kPa-) maximum outlet pressure unless otherwise indicated.
- F. Combination Temperature-and-Pressure Relief Valves: ASME rated and stamped. Include relieving capacity at least as great as heat input, and include pressure setting less than working-pressure rating of domestic-water heater. Select relief valves with sensing element that extends into storage tank.
- G. Pressure Relief Valves: ASME rated and stamped. Include pressure setting less than working-pressure rating of domestic-water heater.
- H. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4.
- I. Shock Absorbers: ASSE 1010 or PDI-WH 201, Size A water hammer arrester.
- J. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Include dimension that will support bottom of domestic-water heater a minimum of 18 inches (457 mm) above the floor.

Lakeside Union School District

K. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.4 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect domestic-water heaters specified to be ASME-code construction, in accordance with ASME Boiler and Pressure Vessel Code.
- B. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.
- C. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

- A. Commercial, Electric, Domestic-Water Heater Mounting: Install commercial, electric, domestic-water heaters on concrete base. Comply with requirements for concrete bases specified in Section 033000 "Cast-in-Place Concrete."
 - 1. Exception: Omit concrete bases for commercial, electric, domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
 - 2. Maintain manufacturer's recommended clearances.
 - 3. Arrange units so controls and devices that require servicing are accessible.
 - 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
 - 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 7. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 8. Anchor domestic-water heaters to substrate.
- B. Install electric, domestic-water heaters level and plumb, in accordance with layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
 - Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."
- C. Install commercial, electric, domestic-water heaters with seismic-restraint devices.
- D. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend domestic-water heater relief-

Lakeside Union School District

valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

- E. Install combination temperature-and-pressure relief valves in water piping for electric, domestic-water heaters without storage. Extend domestic-water heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- F. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for electric, domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."
- G. Install thermometers on outlet piping of electric, domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."
- H. Install thermometers on inlet and outlet piping of residential, solar, electric, domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."
- I. Assemble and install inlet and outlet piping manifold kits for multiple electric, domestic-water heaters. Fabricate, modify, or arrange manifolds for balanced water flow through each electric, domestic-water heater. Include shutoff valve and thermometer in each domestic-water heater inlet and outlet, and throttling valve in each electric, domestic-water heater outlet. Comply with requirements for valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping," and comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."
- J. Install pressure-reducing valve with integral bypass relief valve in electric, domestic-water booster-heater inlet piping and water hammer arrester in booster-heater outlet piping. Set pressure-reducing valve for outlet pressure of 25 psig (172 kPa). Comply with requirements for pressure-reducing valves and water hammer arresters specified in Section 221119 "Domestic Water Piping Specialties."
- K. Install piping-type heat traps on inlet and outlet piping of electric, domestic-water heater storage tanks without integral or fitting-type heat traps.
- L. Fill electric. domestic-water heaters with water.
- M. Charge domestic-water expansion tanks with air to required system pressure.
- N. Install dielectric fittings in all locations where piping of dissimilar metals is to be joined. The wetted surface of the dielectric fitting contacted by potable water shall contain less than 0.25 percent of lead by weight.
- O. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."
- P. Install isolation ball valve on cold and hot water lines on inlet and outlet side of water heater.

Lakeside Union School District

3.2 PIPING CONNECTIONS

- A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to electric, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Perform tests and inspections with the assistance of a factory-authorized service representative.
- D. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- E. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports.

END OF SECTION

Lakeside Union School District

SECTION 230130.52

EXISTING HVAC AIR DISTRIBUTION SYSTEM CLEANING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes cleaning existing HVAC air-distribution equipment, ducts, plenums, and system components.

1.2 **DEFINITIONS**

- A. ACAC: American Council for Accredited Certification.
- B. AIHA-LAP: American Industrial Hygiene Association Lab Accreditation Program
- C. ASCS: Air systems cleaning specialist.
- D. CESB: Council of Engineering and Scientific Specialty Boards.
- E. CMI: Certified Microbial Investigator.
- F. CMC: Certified Microbial Consultant.
- G. CMR: Certified Microbial Remediator.
- H. CMRS: Certified Microbial Remediation Supervisor.
- I. EMLAP: Environmental Microbiology Laboratory Accreditation Program.
- J. IEP: Indoor Environmental Professional.
- K. IICRC: Institute of Inspection, Cleaning, and Restoration Certification.
- L. NADCA: National Air Duct Cleaners Association.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. ASCS Qualifications: A certified member of NADCA.

Lakeside Union School District

- 1. Certification: Employ an ASCS certified by NADCA on a full-time basis.
- 2. Supervisor Qualifications: Certified as an ASCS by NADCA.
- B. IEP Qualifications: CMI who is certified by ACAC and accredited by CESB.
- C. IEP Qualifications: CMC who is certified by ACAC and accredited by CESB.
- D. CMR Qualifications: Certified by ACAC and accredited by CESB.
- E. CMRS Qualifications: Certified by ACAC and accredited by CESB.

PART 2 - PRODUCTS- NOT USED

PART 3 - EXECUTION

3.1 PREPARATION

- A. Inspect HVAC air-distribution equipment, ducts, plenums, and system components to determine appropriate methods, tools, and equipment required for performance of the Work.
- B. Cleaning Plan: Prepare a written plan for air-distribution system cleaning that includes strategies and step-by-step procedures.
- C. Proceed with work only after conditions detrimental to performance of the Work have been corrected and cleaning plan has been approved.
- D. Use the existing service openings, as required for proper cleaning, at various points of the HVAC system for physical and mechanical entry and for inspection.
- E. Mark the position of manual volume dampers and air-directional mechanical devices inside the system prior to cleaning.

3.2 CLEANING

- A. Comply with NADCA ACR.
- B. Perform electrical lockout and tagout according to Owner's standards or authorities having jurisdiction.
- C. Remove non-adhered substances and deposits from within the HVAC system.
- D. Systems and Components to Be Cleaned: All air-moving and -distribution equipment.
- E. Collect debris removed during cleaning. Ensure that debris is not dispersed outside the HVAC system during the cleaning process.
 - 1. Particulate Collection: For particulate collection equipment, include adequate filtration to contain debris removed. Locate equipment downwind and away from all air intakes and other points of entry into the building.

Lakeside Union School District

- 2. HEPA filtration with 99.97 percent collection efficiency for particles sized 0.3 micrometer or larger shall be used where the particulate collection equipment is exhausting inside the building.
- F. Control odors and mist vapors during the cleaning and restoration process.
- G. Mark the position of manual volume dampers and air-directional mechanical devices inside the system prior to cleaning. Restore them to their marked position on completion of cleaning.
- H. System components shall be cleaned so that all HVAC system components are visibly clean. On completion, all components must be returned to those settings recorded just prior to cleaning operations.
- I. Clean all air-distribution devices, registers, grilles, and diffusers.
- J. Clean non-adhered substance deposits according to NADCA ACR and the following:
 - Clean air-handling units, airstream surfaces, components, condensate collectors, and drains.
 - 2. Ensure that a suitable operative drainage system is in place prior to beginning wash-down procedures.
 - 3. Clean evaporator coils, reheat coils, and other airstream components.

K. Air-Distribution Systems:

- 1. Create service openings in the HVAC system as necessary to accommodate cleaning.
- 2. Mechanically clean air-distribution systems specified to remove all visible contaminants, so that the systems are capable of passing the HVAC System Cleanliness Tests (see NADCA ACR).
- L. Debris removed from the HVAC system shall be disposed of according to applicable Federal, state, and local requirements.
- M. Mechanical Cleaning Methodology:
 - 1. Source-Removal Cleaning Methods: The HVAC system shall be cleaned using source-removal mechanical cleaning methods designed to extract contaminants from within the HVAC system and to safely remove these contaminants from the facility. No cleaning method, or combination of methods, shall be used that could potentially damage components of the HVAC system or negatively alter the integrity of the system.
 - a. Use continuously operating vacuum-collection devices to keep each section being cleaned under negative pressure.
 - b. Cleaning methods that require mechanical agitation devices to dislodge debris that is adhered to interior surfaces of HVAC system components shall be equipped to safely remove these devices. Cleaning methods shall not damage the integrity of HVAC system components or damage porous surface materials, such as duct and plenum liners.
 - 2. Cleaning Mineral-Fiber Insulation Components:
 - a. Fibrous-glass thermal or acoustical insulation elements present in equipment or ductwork shall be thoroughly cleaned with HEPA vacuuming equipment while the HVAC system is under constant negative pressure and shall not be permitted to get wet according to NADCA ACR.

Lakeside Union School District

- b. Cleaning methods used shall not cause damage to fibrous-glass components and will render the system capable of passing the HVAC System Cleanliness Tests (see NADCA ACR).
- c. Fibrous materials that become wet shall be discarded and replaced.

N. Application of Antimicrobial Treatment:

- Apply antimicrobial agents and coatings if active fungal growth is determined by the IEP
 to be at Condition 2 or Condition 3 status according to IICRC S520, as analyzed by a
 laboratory accredited by AIHA-LAP with an EMLAP certificate, and with results
 interpreted by an IEP. Apply antimicrobial agents and coatings according to
 manufacturer's written recommendations and EPA registration listing after the removal of
 surface deposits and debris.
- 2. Apply antimicrobial treatments and coatings after the system is rendered clean.
- 3. Apply antimicrobial agents and coatings directly onto surfaces of interior ductwork.
- 4. Microbial remediation shall be performed by a qualified CMR and CMRS.

3.3 CLEANLINESS VERIFICATION

- A. Verify cleanliness according to NADCA ACR, "Verification of HVAC System Cleanliness" Section.
- B. Surface-Cleaning Verification: Perform visual inspection for cleanliness. If no contaminants are evident through visual inspection, the HVAC system shall be considered clean. If visible contaminants are evident through visual inspection, those portions of the system where contaminants are visible shall be re-cleaned and subjected to re-inspection for cleanliness.
- C. Verification of Coil Cleaning: Coil will be considered clean if the coil is free of foreign matter and chemical residue, based on a thorough visual inspection.
- D. Prepare a written cleanliness verification report.

3.4 RESTORATION

- A. Restore and repair HVAC air-distribution equipment, ducts, plenums, and components according to NADCA ACR, "Restoration and Repair of Mechanical Systems" Section.
- B. Restore service openings capable of future reopening. Comply with requirements in Section 233113 "Metal Ducts."
- C. Replace fibrous-glass materials that cannot be restored by cleaning or resurfacing. Comply with requirements in Section 233113 "Metal Ducts."
- D. Replace damaged insulation according to Section 230713 "Duct Insulation."
- E. Ensure that closures do not hinder or alter airflow.
- F. New closure materials, including insulation, shall match opened materials and shall have removable closure panels fitted with gaskets and fasteners.
- G. Restore manual volume dampers and air-directional mechanical devices inside the system to their marked position on completion of cleaning.

Lakeside Union School District

3.5 DUCT AIR LEAKAGE TESTING OF EXISTING DUCTWORK

- A. The work includes duct air leakage testing (DALT) and testing, adjusting, and balancing (TAB) of existing heating and ventilating (HVAC) air distribution systems including equipment and performance data, and ducts which are located within, on, under, between, and adjacent to buildings, including records of existing conditions.
- B. Perform TAB in accordance with the requirements of the TAB procedural standard recommended by the TAB trade association that approved the TAB Firm's qualifications. Comply with requirements of AABC MN-1, NEBB PROCEDURAL STANDARDS, or SMACNA 1780 (TABB)
- C. Conduct DALT and TAB of the indicated existing systems and equipment and submit the specified DALT and TAB reports for approval. Conduct DALT testing in compliance with the requirements specified in SMACNA 1972 CD, except as supplemented and modified by this section.

3.6 DALT AND TAB SERVICES TO OBTAIN EXISTING CONDITIONS

- A. Conduct DALT and TAB of the indicated existing systems and equipment and submit the specified DALT and TAB reports for approval. Conduct this DALT and TAB work in accordance with the requirements of this section.
- B. If any of the duct sections checked are determined to have a leakage rate measured that exceeds the leakage rate allowed by SMACNA Leak Test Manual for an indicated duct construction class and sealant class, terminate data checking for that section. The associated Pre-final DALT Report data for the given duct system will be disapproved. Make the necessary corrections and prepare a revised Pre-final DALT Report. Reschedule a field check of the revised report data with the COTR.
- C. The Testing, Adjusting, and Balancing (TAB) Specialist must review the Contract Plans and Specifications and advise the Contracting Officer of any deficiencies that would prevent the effective and accurate TAB of the system, including records of existing conditions, and systems readiness check. The TAB Specialist must provide a Design Review Report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation. The Testing, Adjusting, and Balancing (TAB) Specialist must review the Contract Plans and Specifications and advise the Contracting Officer of any deficiencies that would prevent the effective and accurate TAB of the system, including records of existing conditions, and systems readiness check. The TAB Specialist must provide a Design Review Report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

END OF SECTION

Lakeside Union School District

SECTION 230513

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.2 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Premium efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.

Lakeside Union School District

- 1. For motors with 2:1 speed ratio, consequent pole, single winding.
- 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Rotor: Random-wound, squirrel cage.
- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- G. Temperature Rise: Match insulation rating.
- H. Insulation: Class F.
- I. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.
- J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 - 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.

Lakeside Union School District

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION - NOT USED

END OF SECTION

Lakeside Union School District

SECTION 230529

HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Thermal-hanger shield inserts.
 - 4. Fastener systems.
 - 5. Equipment supports.

1.2 SUBMITTALS

- A. Product Data: For each type of product.
- B. Welding certificates.

1.3 QUALITY ASSURANCE

- A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized, hot-dip galvanized, or electro-galvanized.
 - 3. Nonmetallic Coatings: Plastic coated, or epoxy powder-coated.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.
- B. Stainless Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

Lakeside Union School District

- 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel
- C. Copper Pipe and Tube Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-plated steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and Ubolts.

2.3 THERMAL-HANGER SHIELD INSERTS

- A. Insulation-Insert Material for Piping: ASTM C552, Type II cellular glass with 100-psi or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength and vapor barrier. Cold piping shall be installed with a vapor barrier.
- B. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- C. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- D. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type anchors for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- C. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MATERIALS

A. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; galvanized.

Lakeside Union School District

- B. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout: suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A36/A36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- D. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- F. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- H. Install lateral bracing with pipe hangers and supports to prevent swaying.
- Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

Lakeside Union School District

- K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- L. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 - 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 - 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

Lakeside Union School District

- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Cleanup and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous meta
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.

Lakeside Union School District

- F. Use stainless steel pipe hangers and stainless steel] or corrosion-resistant attachments for hostile environment applications.
- G. Use padded hangers for piping that is subject to scratching.
- H. Use thermal-hanger shield inserts for insulated piping and tubing.
- I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8
 - 5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30
 - 6. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 7. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 - 8. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
 - 9. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is unnecessary.
- J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24
 - Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
- L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.

Lakeside Union School District

- 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
- 6. C-Clamps (MSS Type 23): For structural shapes.
- 7. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb
- 8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 - 3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
- O. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- P. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION

Lakeside Union School District

SECTION 230548.13

VIBRATION CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Elastomeric isolation pads.
- 2. Elastomeric isolation mounts.
- 3. Restrained elastomeric isolation mounts.
- 4. Open-spring isolators.
- 5. Housed-spring isolators.
- 6. Restrained-spring isolators.
- 7. Housed-restrained-spring isolators.
- 8. Pipe-riser resilient support.
- 9. Resilient pipe guides.
- 10. Elastomeric hangers.
- 11. Spring hangers.
- 12. Restraints rigid type.
- 13. Restraints cable type.
- 14. Restraint accessories.

B. Related Requirements:

1. Section 210548.13 "Vibration Controls for Fire-Suppression Piping and Equipment" for devices for fire-suppression equipment and systems.

1.2 ESUBMITTALS

- A. Product Data: For each type of product.
- B. Coordination Drawings: Show coordination of vibration isolation device installation for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints.
- C. Welding certificates.
- D. Field quality-control reports.

1.3 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct testing indicated, be an NRTL as defined by OSHA in 29 CFR 1910.7 and be acceptable to authorities having jurisdiction.
- B. Welding Qualifications: Qualify procedures and personnel in accordance with AWS D1.1/D1.1M, "Structural Welding Code Steel."

Lakeside Union School District

PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

- Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
- 2. Size: Factory or field cut to match requirements of supported equipment.
- 3. Pad Material: Oil- and water-resistant rubber.
- 4. Infused nonwoven cotton or synthetic fibers.
- 5. Load-bearing metal plates adhered to pads.
- 6. Sandwich-Core Material: Resilient and elastomeric.
 - a. Infused nonwoven cotton or synthetic fibers.

2.2 ELASTOMERIC ISOLATION MOUNTS

A. Elastomeric Isolation Mounts:

- 1. Mounting Plates:
 - a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 - b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
- 2. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.3 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:

- 1. Description: All-directional isolator with restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - a. Housing: Cast-ductile iron or welded steel.
 - b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 OPEN-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators:
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

Lakeside Union School District

- 5. Baseplates: Factory-drilled steel plate for bolting to structure with an elastomeric isolator pad attached to the underside. Baseplates shall limit floor load to 500 psi.
- 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- 7. Minimum deflection as indicated on Drawings.

2.5 HOUSED-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
 - a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psi.
 - b. Top housing with attachment and leveling bolt and elastomeric pad.

2.6 RESTRAINED-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:
 - 1. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 - a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psi.
 - b. Top plate with threaded mounting holes and elastomeric pad.
 - c. Internal leveling bolt that acts as blocking during installation.
 - 2. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 7. Minimum deflection as indicated on Drawings.

2.7 HOUSED-RESTRAINED-SPRING ISOLATORS

- A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:
 - 1. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.

Lakeside Union School District

- a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psi.
- b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.
- 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.8 PIPE-RISER RESILIENT SUPPORT

- A. All-Directional, Acoustical Pipe Anchor Consisting of Two Steel Tubes Separated by a Minimum 1/2-inch- Thick Neoprene:
 - 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 - 2. Maximum Load Per Support: 500 psi on isolation material providing equal isolation in all directions.

2.9 RESILIENT PIPE GUIDES

- A. Telescopic Arrangement of Two Steel Tubes or Post and Sleeve Arrangement Separated by a Minimum 1/2-inch- Thick Neoprene:
 - 1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.10 ELASTOMERIC HANGERS

- A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
 - 1. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Damping Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel-to-steel contact.

2.11 SPRING HANGERS

- A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.

Lakeside Union School District

- 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
- 7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
- 8. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

2.12 RESTRAINTS - RIGID TYPE

A. Description: Shop- or field-fabricated bracing assembly made of AISI S110-07-S1 slotted steel channels, ANSI/ASTM A53/A53M steel pipe as per NFPA 13, or other rigid steel brace member. Includes accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.13 RESTRAINTS - CABLE TYPE

- A. Restraint Cables: ASTM A492 stainless steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with fittings attached by means of poured socket, swaged socket, or mechanical (Flemish eye) loop.
- B. Restraint cable assembly and cable fittings must comply with ASCE/SEI 19-10 or ASCE/SEI 19-16. All cable fittings and complete cable assembly must maintain the minimum cable breaking force. U-shaped cable clips and wedge-type end fittings do not comply and are unacceptable.

2.14 RESTRAINT ACCESSORIES

- A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- B. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
- C. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- D. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- E. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

Lakeside Union School District

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.
- B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to wind-load forces.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength is adequate to carry static and wind force loads within specified loading limits.

3.2 INSTALLATION OF VIBRATION CONTROL DEVICES

- A. Provide vibration control devices for systems and equipment where indicated in Equipment Schedules on Drawings, where Specifications indicate they are to be installed on specific equipment and systems.
- B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.
- C. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

D. Equipment Restraints:

- Install snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
- 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.

E. Piping Restraints:

- 1. Comply with requirements in MSS SP-127.
- 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
- 3. Brace a change of direction longer than 12 feet.
- F. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- G. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- H. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

Lakeside Union School District

3.3 ACCOMMODATION OF DIFFERENTIAL MOTION

- A. Provide flexible connections in piping systems where they cross structural joints and other point where differential movement may occur. Provide adequate flexibility to accommodate differential movement as determined in accordance with ASCE/SEI 7.
- B. Adjust isolators after system is at operating weight.
- C. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by
 - 5. Test to 90 percent of rated proof load of device.
 - 6. Measure isolator restraint clearance.
 - 7. Measure isolator deflection.
 - 8. Verify snubber minimum clearances.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

END OF SECTION

Lakeside Union School District

SECTION 230553

IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment-Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: Brass, 0.032-inch, stainless steel, 0.025-inch, aluminum, 0.032-inch, or anodized aluminum, 0.032-inch, minimum thickness, with predrilled or stamped holes for attachment hardware.
 - 2. Letter and Background Color: As indicated for specific application under Part 3.
 - 3. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 4. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances of up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 5. Fasteners: Stainless steel rivets or self-tapping screws.
 - 6. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, with predrilled holes for attachment hardware.
 - 2. Letter and Background Color: As indicated for specific application under Part 3.
 - Maximum Temperature: Able to withstand temperatures of up to 160 deg F.
 - 4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

Lakeside Union School District

- 5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances of up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 6. Fasteners: Stainless steel rivets or self-tapping screws.
- 7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, with predrilled holes for attachment hardware.
- B. Letter and Background Color: As indicated for specific application under Part 3.
- C. Maximum Temperature: Able to withstand temperatures of up to 160 deg F.
- D. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- E. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances of up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- F. Fasteners: Stainless steel rivets or self-taping screws.
- G. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- H. Arc-Flash Warning Signs: Provide arc-flash warning signs in locations and with content in accordance with requirements of OSHA and NFPA70E and other applicable codes and standards.
- I. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

2.4 INSTALLATION, GENERAL REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

Lakeside Union School District

D. Locate identifying devices so that they are readily visible from the point of normal approach.

2.5 INSTALLATION OF EQUIPMENT LABELS, WARNING SIGNS, AND LABELS

- A. Permanently fasten labels on each item of mechanical equipment.
- B. Sign and Label Colors:
 - 1. White letters on an ANSI Z535.1 safety-blue background.
- C. Locate equipment labels where accessible and visible.
- D. Arc-Flash Warning Signs: Provide arc-flash warning signs on electrical disconnects and other equipment where arc-flash hazard exists, as indicated on Drawings, and in accordance with requirements of OSHA and NFPA 70E, and other applicable codes and standards.

END OF SECTION

Lakeside Union School District

SECTION 230593

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

2.

- A. Section Includes:
 - 1. Testing, Adjusting, and Balancing of Air Systems:
 - a. Constant-volume air systems.
 - Testing, adjusting, and balancing of equipment.
 - 3. Testing, adjusting, and balancing of existing HVAC systems and equipment.
 - 4. Duct leakage tests verification.
 - 5. HVAC-control system verification.

1.2 **DEFINITIONS**

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
- F. TDH: Total dynamic head.
- G. UFAD: Underfloor air distribution.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 30 days of Contractor's Notice to Proceed, submit the Contract Documents review report, as specified in Part 3.
- C. Strategies and Procedures Plan: Within 30 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures, as specified in "Preparation" Article.
- D. System Readiness Checklists: Within 30 days of Contractor's Notice to Proceed, submit system readiness checklists, as specified in "Preparation" Article.

Lakeside Union School District

- E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.
- F. Certified TAB reports.
- G. Sample report forms.
- H. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - Dates of calibration.

1.4 QUALITY ASSURANCE

- A. TAB Specialists Qualifications, Certified by AABC, NEBB or TABB:
 - TAB Field Supervisor: Employee of the TAB specialist and certified by AABC, NEBB or TABB.
 - 2. TAB Technician: Employee of the TAB specialist and certified by AABC, NEBB or TABB.
- B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

1.5 FIELD CONDITIONS

- A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
- B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
- B. Examine installed systems for balancing devices, such as test ports, gauge cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

Lakeside Union School District

- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for HVAC to verify that they are properly separated from adjacent areas and sealed.
- F. Examine equipment performance data, including fan curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.
- J. Examine operating safety interlocks and controls on HVAC equipment.
- K. Examine control dampers for proper installation for their intended function of isolating, throttling, diverting, or mixing air flows.
- L. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes the following:
 - 1. Equipment and systems to be tested.
 - 2. Strategies and step-by-step procedures for balancing the systems.
 - 3. Instrumentation to be used.
 - 4. Sample forms with specific identification for all equipment.
- B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 - 1. Airside:
 - a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 - b. Duct systems are complete with terminals installed.

Lakeside Union School District

- c. Volume, smoke, and fire dampers are open and functional.
- d. Clean filters are installed.
- e. Fans are operating, free of vibration, and rotating in correct direction.
- f. Variable-frequency controllers' startup is complete and safeties are verified.
- g. Automatic temperature-control systems are operational.
- h. Ceilings are installed.
- i. Windows and doors are installed.
- j. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system in accordance with the procedures contained in [AABC's "National Standards for Total System Balance"] [ASHRAE 111] [NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems"] and in this Section.
- B. Cut insulation, ducts, pipes, and equipment casings for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
 - Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish in accordance with Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP).

3.4 TESTING, ADJUSTING, AND BALANCING OF HVAC EQUIPMENT

- A. Test, adjust, and balance HVAC equipment indicated on Drawings, including, but not limited to, the following:
 - 1. Motors.
 - Fans and ventilators.
 - 3. Commercial kitchen hoods.
 - 4. Furnaces.
 - 5. Condensing units.
 - 6. Rooftop air-conditioning units.
 - 7. Heating-only makeup air units.
 - 8. Split-system air conditioners.
 - 9. Heat pumps.

Lakeside Union School District

3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' Record drawings duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaustair dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.

3.6 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - Measure total airflow.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Where duct conditions allow, measure airflow by main Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses close to the fan and prior to any outlets, to obtain total airflow.
 - c. Where duct conditions are unsuitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 - 2. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the air-handling system.
 - d. Report artificial loading of filters at the time static pressures are measured.
 - 3. Review Contractor-prepared shop drawings and Record drawings to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

Lakeside Union School District

- 4. Obtain approval from District Construction Manager for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fanmotor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 - 1. Measure airflow of submain and branch ducts.
 - 2. Adjust submain and branch duct volume dampers for specified airflow.
 - 3. Re-measure each submain and branch duct after all have been adjusted.
- C. Adjust air inlets and outlets for each space to indicated airflows.
 - 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 - 2. Measure inlets and outlets airflow.
 - 3. Adjust each inlet and outlet for specified airflow.
 - 4. Re-measure each inlet and outlet after they have been adjusted.
- D. Verify final system conditions.
 - 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 - 2. Re-measure and confirm that total airflow is within design.
 - 3. Re-measure all final fan operating data, speed, volts, amps, and static profile.
 - 4. Mark all final settings.
 - 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 - 6. Measure and record all operating data.
 - 7. Record final fan-performance data.

3.7 PROCEDURES FOR MOTORS

- A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Phase and hertz.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter size and thermal-protection-element rating.
 - 8. Service factor and frame size.
- B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

Lakeside Union School District

3.8 PROCEDURES FOR AIR-COOLED CONDENSING UNITS

- A. Verify proper rotation of fan(s).
- B. Measure and record entering- and leaving-air temperatures.
- C. Measure and record entering and leaving refrigerant pressures.
- D. Measure and record operating data of compressor(s), fan(s), and motors.

3.9 PROCEDURES FOR EXHAUST HOODS

- A. Room Pressure: Measure and record room pressure with respect to atmosphere and adjacent space with hoods in room initially not operating and then with hoods operating.
- B. Makeup Air: Systems supplying source of makeup air to hoods shall be in operation during testing and balancing of exhaust hoods.
 - 1. Measure and record temperature of makeup air entering hood. If hood makeup air is from multiple sources having different temperatures, measure and record the airflow and temperatures of each source and calculate the weighted average temperature.
 - 2. Use simulated smoke to observe supply air-distribution air patterns in vicinity of hoods. Consult with hood manufacturer and report conditions that have a detrimental effect on intended capture, containment, and other attributes effecting proper operation.
- C. Rooms with Multiple Hoods: Test each hood separately, one at a time, and repeat tests with all hoods intended to operate simultaneously by design.
- D. Canopy Hoods: Measure and record the following:
 - 1. Pressure drop across hood.
 - 2. Airflow by duct traverse where duct distribution will allow accurate measurement, and calculate hood average face velocity.
 - 3. Measure velocity across hood face and calculate hood airflow.
 - a. Clearly indicate the direction of flow at each point of measurement.
 - b. Measure velocity across opening on not less than [12-inch (300-mm)] < Insert dimension > centers. Record velocity at each measurement, and calculate average velocity.

E. Kitchen Hoods:

- 1. Type 1: Measure and record pressure drop and face velocity of hood filters and slots in accordance with hood manufacturer's instructions. Consult hood manufacturer to determine hood airflow using recorded information.
- 2. Type 2: Measure and record airflow by duct traverse.
- F. AHJ Tests: Conduct additional tests required by authorities having jurisdiction.

3.10 DUCT LEAKAGE TESTS

A. Witness the duct leakage testing performed by Installer.

Lakeside Union School District

- B. Verify that proper test methods are used and that leakage rates are within specified limits.
- C. Report deficiencies observed.

3.11 HVAC CONTROLS VERIFICATION

- A. In conjunction with system balancing, perform the following:
 - 1. Verify HVAC control system is operating within the design limitations.
 - 2. Confirm that the sequences of operation are in compliance with Contract Documents.
 - 3. Verify that controllers are calibrated and function as intended.
 - 4. Verify that controller set points are as indicated.
 - 5. Verify the operation of lockout or interlock systems.
 - 6. Verify the operation of valve and damper actuators.
 - 7. Verify that controlled devices are properly installed and connected to correct controller.
 - 8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
 - 9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.
- B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.12 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

- A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 - 1. Measure and record the operating speed, airflow, and static pressure of each fan and equipment with fan(s).
 - 2. Measure and record flows, temperatures, and pressures of each piece of equipment in each hydronic system. Compare the values to design or nameplate information, where information is available.
 - 3. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 - 4. Check the refrigerant charge.
 - 5. Check the condition of filters.
 - 6. Check the condition of coils.
 - 7. Check the operation of the drain pan and condensate-drain trap.
 - 8. Check bearings and other lubricated parts for proper lubrication.
 - 9. Report on the operating condition of the equipment and the results of the measurements taken. Report deficiencies.
- B. TAB After Construction: Before performing testing and balancing of renovated existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished in accordance with renovation scope indicated by Contract Documents. Verify the following:
 - 1. New filters are installed.
 - 2. Coils are clean and fins combed.
 - 3. Drain pans are clean.
 - 4. Fans are clean.
 - 5. Bearings and other parts are properly lubricated.
 - 6. Deficiencies noted in the preconstruction report are corrected.

Lakeside Union School District

- C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
 - 1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
 - 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
 - 3. If calculations increase or decrease the airflow rates and water flow rates by more than [5] <Insert number> percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is [5] <Insert number> percent or less, equipment adjustments are not required.
 - 4. Balance each air outlet.

3.13 TOLERANCES

- A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent. If design value is less than 100 cfm, within 10 cfm.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent. If design value is less than 100 cfm, within 10 cfm.
- B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.14 PROGRESS REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for system-balancing devices. Recommend changes and additions to system-balancing devices, to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance-measuring and balancing devices.
- B. Status Reports: Prepare biweekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.15 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
 - 3. Certify validity and accuracy of field data.
- B. Final Report Contents: In addition to certified field-report data, include the following:

Lakeside Union School District

- 1. Pump curves.
- 2. Fan curves.
- 3. Manufacturers' test data.
- 4. Field test reports prepared by system and equipment installers.
- Other information relative to equipment performance; do not include Shop Drawings and Product Data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB specialist.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report.

 Number each page in the report.
 - 11. Summary of contents, including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans performance forms, including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Heating coil, dry-bulb conditions.
 - e. Fan drive settings, including settings and percentage of maximum pitch diameter.
 - f. Settings for pressure controller(s).
 - g. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Duct, outlet, and inlet sizes.
 - 3. Balancing stations.
 - 4. Position of balancing devices.
- E. Air-Handling-Unit Test Reports: For air-handling units, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.

Lakeside Union School District

- d. Model number and unit size.
- e. Manufacturer's serial number.
- f. Unit arrangement and class.
- g. Discharge arrangement.
- h. Sheave make, size in inches, and bore.
- i. Center-to-center dimensions of sheave and amount of adjustments in inches.
- j. Number, make, and size of belts.
- k. Number, type, and size of filters.

2. Motor Data:

- a. Motor make, and frame type and size.
- b. Horsepower and speed.
- c. Volts, phase, and hertz.
- d. Full-load amperage and service factor.
- e. Sheave make, size in inches, and bore.
- f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):

- a. Total airflow rate in cfm.
- b. Total system static pressure in inches wg.
- c. Fan speed.
- d. Inlet and discharge static pressure in inches wg.
- e. For each filter bank, filter static-pressure differential in inches wg.
- f. Preheat-coil static-pressure differential in inches wg.
- g. Cooling-coil static-pressure differential in inches wg.
- h. Heating-coil static-pressure differential in inches wg.
- i. List for each internal component with pressure-drop, static-pressure differential in inches wg.
- j. Outdoor airflow in cfm.
- k. Return airflow in cfm.
- I. Outdoor-air damper position.
- m. Return-air damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:

- a. System identification.
- b. Location.
- c. Coil type.
- d. Number of rows.
- e. Fin spacing in fins per inch o.c.
- f. Make and model number.
- g. Face area in sq. ft..
- h. Tube size in NPS.
- i. Tube and fin materials.
- j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):

- a. Airflow rate in cfm.
- b. Average face velocity in fpm.
- c. Air pressure drop in inches wg.

Lakeside Union School District

- d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
- e. Return-air, wet- and dry-bulb temperatures in deg F.
- f. Entering-air, wet- and dry-bulb temperatures in deg F.
- g. Leaving-air, wet- and dry-bulb temperatures in deg F.
- G. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches, and bore.
 - h. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and speed.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - g. Number, make, and size of belts.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan speed.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- H. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System fan and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.
 - e. Duct size in inches.
 - f. Duct area in sq. ft..
 - g. Indicated airflow rate in cfm.
 - h. Indicated velocity in fpm.
 - i. Actual airflow rate in cfm.
 - j. Actual average velocity in fpm.
 - k. Barometric pressure in psig.
- I. Instrument Calibration Reports:

Lakeside Union School District

- 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.16 VERIFICATION OF TAB REPORT

- A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of District Construction Manager.
- B. District Construction Manager shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to the lesser of either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
- C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the TAB shall be considered incomplete and shall be rejected.
- E. If recheck measurements find the number of failed measurements noncompliant with requirements indicated, proceed as follows:
 - TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection. All changes shall be tracked to show changes made to previous report.
 - 2. If the second final inspection also fails, Owner may pursue others Contract options to complete TAB work.
- F. Prepare test and inspection reports.

END OF SECTION

Lakeside Union School District

SECTION 230713

DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 - 5. Outdoor, concealed supply and return.

B. Related Sections:

- 1. Section 230716 "HVAC Equipment Insulation."
- 2. Section 233113 "Metal Ducts" for duct liners.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 - 3. Detail application of field-applied jackets.
 - 4. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products in accordance with ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation, jacket materials, adhesive, mastic, tapes, and cement material containers with appropriate markings of applicable testing agency.

Lakeside Union School District

- 1. All Insulation Installed Indoors; Outdoors-Installed Insulation in Contact with Airstream: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
- 2. All Insulation Installed Indoors and Outdoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2.2 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials are applied.
- B. Products do not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.
- D. Insulation materials for use on austenitic stainless steel are qualified as acceptable in accordance with ASTM C795.
- E. Foam insulation materials do not use CFC or HCFC blowing agents in the manufacturing process.
- F. Glass-Fiber Blanket: Glass fibers bonded with a thermosetting resin; suitable for maximum use temperature up to 450 deg F in accordance with ASTM C411. Comply with ASTM C553, Type II, and ASTM C1290, Type I, unfaced Type II with factory-applied vinyl jacket Type III with factory-applied FSK jacket Type III with factory-applied FSP jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- G. Mineral Wool Blanket: Basalt volcanic rock-derived fibers bonded with a thermosetting resin, unfaced; suitable for maximum use temperature up to 1200 deg F in accordance with ASTM C447. Comply with ASTM C553.
- H. Glass-Fiber Board Insulation: Glass fibers bonded with a thermosetting resin; suitable for maximum use temperature between 35 deg F and 250 deg F for jacketed and between 35 deg F and 450 deg F for unfaced in accordance with ASTM C411. Comply with ASTM C612, Type IA or Type IB. For duct and plenum applications, provide insulation unfaced with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- I. Mineral Wool Board: Basalt volcanic rock-derived fibers bonded with a thermosetting resin; suitable for maximum use temperature up to 1100 deg F in accordance with ASTM C411. Comply with ASTM C612, Type III, unfaced.

2.3 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

Lakeside Union School District

2.4 ADHESIVES

- A. Materials are compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Glass-Fiber and Mineral Wool Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
- C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
- D. PVC Jacket Adhesive: Compatible with PVC jacket.

2.5 MASTICS AND COATINGS

- A. Materials shall be compatible with insulation materials, jackets, and substrates.
- B. Vapor-Retarder Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. Water-Vapor Permeance: Comply with ASTM C755, Section 7.2.2, Table 2, for insulation type and service conditions.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Comply with MIL-PRF-19565C, Type II, for permeance requirements, with supplier listing on DOD QPD Qualified Products Database.
 - 4. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Water-Vapor Permeance: ASTM E96, greater than 1.0 perm at manufacturer's recommended dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Color: White.

2.6 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. Materials are compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: Aluminum.
- B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 - 1. Materials are compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: White.

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

Lakeside Union School District

- ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136. Type I.
- 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.
- 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.
- 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C1136, Type II.
- 5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested in accordance with ASTM E96/E96M, Procedure A, and complying with NFPA 90A and NFPA 90B.
- 6. ASJ+: All-service jacket composed of aluminum foil reinforced with glass scrim bonded to a kraft paper interleaving with an outer film leaving no paper exposed; complying with ASTM C1136, Types I, II, III, IV, and VII
- 7. PSK Jacket: Aluminum foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets comply with ASTM C921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Adhesive: As recommended by jacket material manufacturer.
 - 2. Color: White
- D. Aluminum Jacket: Comply with ASTM B209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - 1. Sheet and roll stock ready for shop or field sizing.
 - 2. Finish and thickness are indicated in field-applied jacket schedules.
 - 3. Moisture Barrier for Indoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft
 - 4. Moisture Barrier for Outdoor Applications: 3-mil- thick polysurlyn.
- E. Self-Adhesive Outdoor Jacket (Asphaltic): 60-mil- thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with [white] [stucco-embossed] aluminum-foil facing.
- F. Self-Adhesive Indoor/Outdoor Jacket (Non-Asphaltic): Vapor barrier and waterproofing jacket for installation over insulation located aboveground outdoors or indoors. Specialized jacket has five layers of laminated aluminum and polyester film with low-temperature acrylic pressure-sensitive adhesive. Outer aluminum surface is coated with UV-resistant coating for protection from environmental contaminants.
 - 1. Permeance: 0.00 perm as tested in accordance with ASTM F1249.
 - 2. Flamespread/Smoke Developed: 25/50 as tested in accordance with ASTM E84.
 - 3. Aluminum Finish: [Embossed] [Smooth].

Lakeside Union School District

2.9 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Polyester Mesh: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for ducts.

2.10 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 11.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Width: 2 inches.
 - 2. Thickness: 6 mils.
 - 3. Adhesion: 64 ounces force/inch in width.
 - 4. Elongation: 500.
 - 5. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Width: 2 inches.
 - 2. Thickness: 3.7 mils.
 - 3. Adhesion: 100 ounces force/inch in width.
 - 4. Elongation: 5 percent.
 - 5. Tensile Strength: 34 lbf/inch in width.

2.11 SECUREMENTS

- A. Aluminum Bands: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal.
- B. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in

Lakeside Union School District

position indicated when self-locking washer is in place. Comply with the following requirements:

- a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
- b. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
- c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 2. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 - b. Spindle: Nylon, 0.106-inch- diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 - c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 3. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - b. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - c. Adhesive-backed base with a peel-off protective cover.
- 4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 5. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- D. Wire: 0.080-inch nickel-copper alloy or 0.062-inch soft-annealed, stainless steel.

2.12 CORNER ANGLES

- A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC in accordance with ASTM D1784, Class 16354-C. White or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum in accordance with ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

Lakeside Union School District

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, compress, or otherwise damage insulation or jacket.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing. Replace insulation materials that get wet during storage or in the installation process before being properly covered and sealed in accordance with the Contract Documents, unless otherwise approved by the engineer of record.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth, but not to the extent of creating wrinkles or areas of compression in the insulation.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.

Lakeside Union School District

- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

Lakeside Union School District

- E. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 INSTALLATION OF GLASS-FIBER AND MINERAL-WOOL INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
- B. Comply with manufacturer's written installation instructions.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
 - 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

Lakeside Union School District

- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- C. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
 - 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
 - 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

Lakeside Union School District

3.5 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.6 FIRE-RATED INSULATION SYSTEM INSTALLATION

- A. Comply with manufacturer's written installation instructions.
- B. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.
- C. Insulate duct access panels and doors to achieve same fire rating as duct.
- D. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Section 078413 "Penetration Firestopping."

3.7 FINISHES

- A. Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

Lakeside Union School District

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection is limited to [one] <Insert number> location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.Outdoor, concealed supply and return.

B. Items Not Insulated:

- 1. Fibrous-glass ducts.
- Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
- 3. Factory-insulated flexible ducts.
- 4. Factory-insulated plenums and casings.
- 5. Flexible connectors.
- 6. Vibration-control devices.
- 7. Factory-insulated access panels and doors.

3.10 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, Supply-Air Duct and Plenum Insulation: Glass-fiber or Mineral wool blanket 1-1/2 inches thick and 0.75 lb/cu. ft. nominal density.
- B. Concealed, Return-Air Duct and Plenum Insulation: Glass-fiber or Mineral wool blanket, 1-1/2 inches thick and 0.75 lb/cu. ft. nominal density.
- C. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating.
- D. Exposed, Supply-Air Duct and Plenum Insulation: [Glass-fiber] [Mineral wool] [blanket] [board]1-1/2 inches thick and 0.75 lb/cu. ft. nominal density.Exposed, Return-Air Duct and Plenum Insulation: [Glass-fiber] [Mineral wool] [blanket] [board]1-1/2 inches thick and 0.75 lb/cu. ft. nominal density.Exposed, Outdoor-Air Duct and Plenum Insulation: [Glass-fiber] [Mineral wool] [blanket] [board], 1-1/2 inches thick and 0.75 lb/cu. ft. nominal density.Exposed, Type I,

Lakeside Union School District

Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating.

3.11 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.
- B. Concealed, Supply-Air Duct and Plenum Insulation: [Glass-fiber] [Mineral wool] [blanket] [board]1-1/2 inches thick and [0.75 lb/cu. ft. nominal density.Exposed, Supply-Air Duct and Plenum Insulation: Glass-fiber or Mineral wool blanket 2 inches thick and 0.75 lb/cu. ft. nominal density.
- C. Exposed, Return-Air Duct and Plenum Insulation: Glass-fiber or Mineral wool blanket 2 inches thick and 0.75 lb/cu. ft. nominal density.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums. Concealed:
 - Aluminum, Corrugated: 0.020 inch thick.
- D. Ducts and Plenums, Exposed:
 - 1. Aluminum, Corrugated: 0.020 inch thick.

3.13 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums, Concealed:
 - 1. Aluminum, Corrugated: 0.020 inch thick.
- D. Ducts and Plenums, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:
 - 1. Aluminum, Corrugated: 0.020 inch thick.
- E. Ducts and Plenums, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1. Aluminum, Smooth with 1-1/4-Inch- Deep Corrugations: 0.032 inch.

END OF SECTION

Lakeside Union School District

SECTION 230716

HVAC EQUIPMENT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating HVAC equipment that is not factory insulated.
- B. Related Sections:
 - 1. Section 230713 "Duct Insulation."
 - 2. Section 230719 "HVAC Piping Insulation."

1.2 SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail removable insulation at equipment connections.
 - 2. Detail application of field-applied jackets.
 - 3. Detail application at linkages of control devices.
 - 4. Detail field application for each equipment type.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use.
- D. Material test reports.
- E. Field quality-control reports.

1.3 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or craft training program.

1.4 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with equipment Installer for equipment insulation application.
- C. Coordinate installation and testing of heat tracing.

Lakeside Union School District

1.5 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products in accordance with ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. All Insulation Installed Indoors; Outdoors-Installed Insulation in Contact with Airstream: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. All Insulation Installed Indoors and Outdoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2.2 INSULATION MATERIALS

- A. Comply with requirements in "Breeching Insulation Schedule," "Indoor Equipment Insulation Schedule," and "Outdoor, Aboveground Equipment Insulation Schedule" articles for where insulating materials are applied.
- B. Products do not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.
- D. Insulation materials for use on austenitic stainless steel are qualified as acceptable in accordance with ASTM C795.
- E. Foam insulation materials do not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Comply with ASTM C552.
 - 1. Block Insulation: Type I.
 - 2. Special-Shaped Insulation: Type III.
 - 3. Board Insulation: Type IV.
 - 4. Fabricated shapes in accordance with ASTM C450 and ASTM C585.
 - 5. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- G. Flexible Elastomeric Insulation: Closed-cell or expanded-rubber materials; suitable for maximum use temperature between minus 70 deg F and 220 deg F. Comply with ASTM C534/C534M, Type II, for sheet materials.
- H. Glass-Fiber Blanket: Glass fibers bonded with a thermosetting resin; suitable for maximum use temperature up to 450 deg F in accordance with ASTM C411. Comply with ASTM C553, Type II

Lakeside Union School District

and ASTM C1290, [Type I, unfaced] [Type II with factory-applied vinyl jacket] [Type III with factory-applied FSK jacket]. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

- Mineral Wool Blanket: Basalt volcanic rock-derived fibers bonded with a thermosetting resin, unfaced; suitable for maximum use temperature up to 1200 deg F in accordance with ASTM C447. Comply with ASTM C553.
- J. Glass-Fiber Board: Glass fibers bonded with a thermosetting resin; suitable for maximum use temperature between 35 deg F and 250 deg F for jacketed and between 35 deg F and 450 deg F for unfaced in accordance with ASTM C411. Comply with ASTM C612, Type IA or Type IB. Provide insulation [unfaced] [with factory-applied ASJ] [with factory-applied FSK jacket]. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- K. Mineral Wool Board: Basalt volcanic rock-derived fibers bonded with a thermosetting resin; suitable for maximum use temperature up to 1100 deg F in accordance with ASTM C411. Comply with ASTM C612, Type III, unfaced.
- L. Glass-Fiber, Pipe and Tank: Glass fibers bonded with a thermosetting resin; suitable for maximum use temperature between 35 deg F and 850 deg F, in accordance with ASTM C411. Comply with ASTM C1393.
 - 1. Semirigid board material with factory-applied [ASJ] [FSK] jacket.
 - 2. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- M. Mineral Wool, Pipe and Tank: Mineral wool fibers bonded with a thermosetting resin; suitable for maximum use temperature up to 1000 deg F, in accordance with ASTM C411. Comply with ASTM C1393.
 - 1. Semirigid board material with factory-applied ASJ jacket.
 - 2. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- N. Polyolefin: Polyethylene thermal plastic insulation. Comply with ASTM C1427, Type II, Grade 1 for sheet materials.
- O. Polystyrene: Rigid, extruded cellular polystyrene intended for use as thermal insulation. Comply with ASTM C578, Type IV or VIII.
 - 1. Fabricate shapes in accordance with ASTM C450 and ASTM C585.

2.3 ADHESIVES

- A. Materials are compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
- C. Flexible Elastomeric and Polyolefin Adhesive: Solvent-based adhesive.
 - Flame-spread index is 25 or less and smoke-developed index is 50 or less as tested in accordance with ASTM E84.
 - 2. Wet Flash Point: Below 0 deg F
 - 3. Service Temperature Range: 40 to 200 deg F.
 - 4. Color: Black.

Lakeside Union School District

- D. Glass-Fiber and Mineral Wool Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
- E. Polystyrene Adhesive: Solvent- or water-based, synthetic resin adhesive with a service temperature range of minus 20 to plus 140 deg F.
- F. ASJ Adhesive and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
- G. PVC Jacket Adhesive: Compatible with PVC jacket.

2.4 MASTICS AND COATINGS

- A. Materials are compatible with insulation materials, jackets, and substrates.
- B. Vapor-Retarder Mastic, Water-Based: Suitable for indoor and outdoor use on below-ambient services.
 - 1. Water-Vapor Permeance: Comply with ASTM E96/E96M or ASTM F1249.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Comply with MIL-PRF-19565C, Type II, for permeance requirements, with supplier listing on DOD QPD Qualified Products Database.
 - 4. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Water-Vapor Permeance: ASTM E96/E96M, greater than 1.0 perm at manufacturer's recommended dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Color: White.

2.5 SEALANTS

- A. Materials are as recommended by the insulation manufacturer and are compatible with insulation materials, jackets, and substrates.
- B. Joint Sealants:
 - 1. Permanently flexible, elastomeric sealant.
 - 2. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 3. Color: White or gray.
- C. FSK and Metal Jacket Flashing Sealants:
 - 1. Fire- and water-resistant, flexible, elastomeric sealant.
 - 2. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 3. Color: Aluminum.
- D. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Fire- and water-resistant, flexible, elastomeric sealant.
 - 2. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 3. Color: White.

Lakeside Union School District

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.
 - 4. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested in accordance with ASTM E96/E96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.7 FIELD-APPLIED JACKETS

- A. Field-applied jackets comply with ASTM C1136, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Adhesive: As recommended by jacket material manufacturer.
 - 2. Color: [White] [Color-code jackets based on system. Color as selected by Architect].
 - 3. Factory-fabricated tank heads and tank side panels.

D. Metal Jacket:

- 1. Aluminum Jacket: Comply with ASTM B209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed two-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- E. Self-Adhesive Outdoor Jacket: 60-mil- thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a

Lakeside Union School District

rubberized bituminous resin on a cross-laminated polyethylene film covered with [white] [stucco-embossed] aluminum-foil facing.

- F. Self-Adhesive Indoor/Outdoor Jacket (Non-Asphaltic): Vapor barrier and waterproofing jacket for installation over insulation located aboveground outdoors or indoors. Specialized jacket has five layers of laminated aluminum and polyester film with low-temperature acrylic pressure-sensitive adhesive. Outer aluminum surface is coated with UV-resistant coating for protection from environmental contaminants.
 - 1. Permeance: 0.00 perm as tested in accordance with ASTM F1249.
 - 2. Flamespread/Smoke Developed: 25/50 as tested in accordance with ASTM E84.
 - 3. Aluminum Finish: Embossed or Smooth.
- G. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perm when tested in accordance with ASTM E96/E96M and with a flame-spread index of 10 and a smoke-developed index of 20 when tested in accordance with ASTM E84.
- H. PVDC Jacket for Outdoor Applications: 6-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perm when tested in accordance with ASTM E96/E96M and with a flame-spread index of 25 and a smoke-developed index of 50 when tested in accordance with ASTM E84.
- I. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Mesh: Approximately 4 oz./sq. yd. with a thread count of 5 strands by 5 strands/sq. in. for covering equipment.
- B. Woven Polyester Mesh: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for equipment.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 11.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - Tensile Strenath: 40 lbf/inch in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.

Lakeside Union School District

- 5. Tensile Strength: 40 lbf/inch in width.
- 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Width: 2 inches.
 - 2. Thickness: 6 mils.
 - 3. Adhesion: 64 ounces force/inch in width.
 - 4. Elongation: 500 percent.
 - 5. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Width: 2 inches .
 - 2. Thickness: 3.7 mils.
 - 3. Adhesion: 100 ounces force/inch in width.
 - 4. Elongation: 5 percent.
 - 5. Tensile Strength: 34 lbf/inch in width.
- E. PVDC Tape for Indoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Width: 3 inches.
 - 2. Film Thickness: 2 mils.
 - 3. Adhesive Thickness: 1.5 mils
 - 4. Elongation at Break: 120 percent.
 - 5. Tensile Strength: 20 psi in width.
- F. PVDC Tape for Outdoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Width: 3 inches.
 - 2. Film Thickness: 6 mils.
 - 3. Adhesive Thickness: 1.5 mils .
 - 4. Elongation at Break: 145 percent.
 - 5. Tensile Strength: 55 psi in width.

2.10 SECUREMENTS

- A. Bands:
 - 1. Stainless Steel: ASTM A240/A240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
 - 2. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
- B. Insulation Pins and Hangers:
 - Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding; 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 - a. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding; 0.106-inch- diameter shank, length

Lakeside Union School District

to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

- 2. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - Spindle: [Copper- or zinc-coated, low-carbon steel] [Aluminum] [Stainless steel], fully annealed, 0.106-inch- diameter shank; length to suit depth of insulation indicated.
 - c. Adhesive: Recommended by hanger manufacturer. Use product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 3. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 - b. Spindle: Nylon, 0.106-inch- diameter shank; length to suit depth of insulation indicated, up to 2-1/2 inches.
 - c. Adhesive: Recommended by hanger manufacturer. Use product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 4. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - b. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed; 0.106-inch-diameter shank; length to suit depth of insulation indicated.
 - c. Adhesive-backed base with a peel-off protective cover.
- 5. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 6. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- D. Wire: 0.080-inch nickel-copper alloy

Lakeside Union School District

2.11 CORNER ANGLES

- A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC in accordance with ASTM D1784, Class 16354-C, white or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum in accordance with ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.
- C. Stainless Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel in accordance with ASTM A240/A240M, Type 304 or Type 316.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range of between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the tradesman installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.
- B. Install insulation materials, forms, vapor barriers or retarders, and jackets, of thicknesses required for each item of equipment, as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, compress, or otherwise damage insulation or jacket.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet during storage or in the installation process before being properly covered

Lakeside Union School District

and sealed in accordance with the Contract Documents, unless otherwise approved by the engineer-of-record.

- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth, but not to the extent of creating wrinkles or areas of compression in the insulation.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - 4. For below-ambient services, apply vapor-barrier mastic over staples.
 - 5. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.
 - 6. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.
- L. Cut insulation in a manner to avoid compressing insulation.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.
- O. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

Lakeside Union School District

3.3 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

- A. Mineral Wool, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive, anchor pins, and speed washers.
 - 1. Apply adhesives in accordance with manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
 - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end ioints.
 - 3. Protect exposed corners with secured corner angles.
 - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 - d. Do not compress insulation during installation.
 - Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 - f. Impale insulation over anchor pins, and attach speed washers.
 - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 5. Secure each layer of insulation with stainless steel or aluminum bands. Select band material compatible with insulation materials.
 - 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
 - 7. Stagger joints between insulation layers at least 3 inches.
 - 8. Install insulation in removable and replaceable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
 - 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
 - 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
- B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.
 - Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
 - 2. Seal longitudinal seams and end joints.
- C. Insulation Installation on Pumps:

Lakeside Union School District

- 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch- diameter fasteners with wing nuts. Alternatively, secure the box sections together using a field-adjustable latching mechanism.
- 2. Fabricate boxes from galvanized steel or stainless steel, at least 0.040 inch thick.
- 3. For below-ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.4 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Install in accordance with manufacturer's written installation instructions and ASTM C1710.
- B. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.5 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless steel bands 12 inches o.c. and at end joints.
- D. Where PVDC jackets are indicated, install as follows:
 - 1. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. 33-1/2-inch- circumference limit allows for 2-inch- overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
 - 2. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

Lakeside Union School District

3.6 FINISHES

- A. Equipment Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum jackets.

3.7 FIELD QUALITY CONTROL

- A. Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections[with the assistance of a factory-authorized service representative.
- C. Tests and Inspections: Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection is limited to one location(s) for each type of equipment defined in "Indoor Equipment Insulation Schedule" and "Outdoor, Aboveground Equipment Insulation Schedule" articles. For large equipment, remove only a portion adequate to determine compliance.
- D. All insulation applications will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.8 EQUIPMENT INSULATION SCHEDULE, GENERAL

- A. Insulation conductivity and thickness per pipe size comply with schedules in this Section or with requirements of authorities having jurisdiction, whichever is more stringent.
- B. Acceptable insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials is Contractor's option.

3.9 BREECHING INSULATION SCHEDULE

- A. Round, exposed breeching and connector insulation is[one of] the following:
 - 1. High-Temperature Glass-Fiber Blanket: 3 inches thick and 3 lb/cu. ft. nominal density.
 - 2. Mineral Wool Blanket: 3 inches thick and 4 lb/cu. ft. nominal density.
- B. Round, concealed breeching and connector insulation is one of the following:

Lakeside Union School District

- 1. High-Temperature Glass-Fiber Blanket: 3 inches thick and 3 lb/cu. ft. nominal density.
- 2. Mineral Wool Blanket: 3 inches thick and 4 lb/cu. ft. nominal density.
- C. Rectangular, exposed breeching and connector insulation is one of the following:
 - 1. High-Temperature Glass-Fiber Blanket: 3 inches thick and 3 lb/cu. ft. nominal density.
 - 2. High-Temperature Glass-Fiber Board: 3 inches thick and 3 lb/cu. ft. nominal density.
- D. Rectangular, concealed breeching and connector insulation is one of the following:
 - 1. High-Temperature Glass-Fiber Blanket: 3 inches thick and 3 lb/cu. ft. nominal density.
 - 2. High-Temperature Glass-Fiber Board: 3 inches thick and 3 lb/cu. ft. nominal density.
 - 3. Mineral Wool Blanket: 3 inches thick and 4 lb/cu. ft. nominal density.
 - 4. Mineral Wool Board: 3 inches thick and 4 lb/cu. ft. nominal density.

3.10 INDOOR EQUIPMENT INSULATION SCHEDULE

A. Insulate indoor and outdoor equipment that is not factory insulated.

3.11 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Equipment, Concealed:
 - 1. Aluminum, Corrugated: 0.020 inch thick.
 - 2. Stainless Steel, Type 304 or Type 316, Smooth No. 2B Finish: 0.010 inch thick.
- D. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces of up to 72:
 - 1. Aluminum, Corrugated: 0.020 inch thick.
 - 2. Stainless Steel, Type 304 or Type 316, Smooth No. 2B Finish: 0.010 inch thick.
- E. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1. Painted Aluminum, Smooth with 1-1/4-Inch- Deep Corrugations: 0.032 inch.
 - 2. Stainless Steel, Type 304 or Type 316, Smooth, with 1-1/4-Inch- Deep Corrugations: 0.020 inch.

3.12 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.

Lakeside Union School District

- C. Equipment, Concealed:
 - 1. PVC: 30 mils thick.
 - 2. Aluminum, Corrugated: 0.024 inch thick.
 - 3. Painted Aluminum, Corrugated: 0.024 inch thick.
- D. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces of up to 72 Inches:
 - 1. Aluminum, Corrugated 0.024 inch thick.
- E. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1. Aluminum, Smoothwith 1-1/4-Inch-: 0.032 inch (thick.

END OF SECTION

Lakeside Union School District

SECTION 230719

HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulation for HVAC piping systems.
- B. Related Requirements:
 - 1. Section 230713 "Duct Insulation" for duct insulation.
 - 2. Section 230716 "HVAC Equipment Insulation" for equipment insulation.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material test reports.
- C. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or craft training program.

Lakeside Union School District

1.5 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.6 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products in accordance with ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation, jacket materials, adhesive, mastic, tapes, and cement material containers with appropriate markings of applicable testing agency.
 - 1. All Insulation Installed Indoors; Outdoors-Installed Insulation in Contact with Airstream: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. All Insulation Installed Indoors and Outdoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2.2 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come into contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable in accordance with ASTM C795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Comply with ASTM C552.

Lakeside Union School District

- 1. Preformed Pipe Insulation without Jacket: Type II, Class 1, unfaced.
- 2. Preformed Pipe Insulation with Jacket: Type II, Class 2, with factory-applied ASJ jacket.
- 3. Fabricated shapes in accordance with ASTM C450, ASTM C585, and ASTM C1639.
- 4. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- G. Flexible Elastomeric: Closed-cell, or expanded-rubber materials; suitable for maximum use temperature between minus 70 deg F and 220 deg F. Comply with ASTM C534/C534M, Type I for tubular materials, Type II, for sheet materials.
- H. Glass-Fiber, Preformed Pipe: Glass fibers bonded with a thermosetting resin; suitable for maximum use temperature up to 850 deg F in accordance with ASTM C411. Comply with ASTM C547.
 - 1. Preformed Pipe Insulation: Type I, Grade A with factory-applied ASJ.
 - 2. Fabricated shapes in accordance with ASTM C450 and ASTM C585.
 - 3. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- I. Mineral Wool, Preformed Pipe: Mandrel-wound mineral wool fibers bonded with a thermosetting resin, unfaced; suitable for maximum use temperature up to 1200 deg Fin accordance with ASTM C447. Comply with ASTM C547.
 - 1. Preformed Pipe Insulation: Type II, Grade A with factory-applied ASJ.
 - 2. Fabricated shapes in accordance with ASTM C450 and ASTM C585.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
- C. Flexible Elastomeric and Polyolefin Adhesive: Solvent-based adhesive.
 - Flame-spread index shall be 25 or less and smoke-developed index shall be 50 or less as tested in accordance with ASTM E84.
 - 2. Wet Flash Point: Below 0 deg F.
 - 3. Service Temperature Range: 40 to 200 deg F.
 - 4. Color: Black.
- D. Glass-Fiber and Mineral Wool Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
- E. ASJ Adhesive and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A, for bonding insulation jacket lap seams and joints.
- F. PVC Jacket Adhesive: Compatible with PVC jacket.

2.4 MASTICS AND COATINGS

- A. Materials shall be compatible with insulation materials, jackets, and substrates.
- B. Vapor-Retarder Mastic. Water Based: Suitable for indoor use on below-ambient services.
 - 1. Water-Vapor Permeance: Comply with ASTM E96/E96M or ASTM F1249.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.

Lakeside Union School District

- 3. Comply with MIL-PRF-19565C, Type II, for permeance requirements, with supplier listing on DOD QPD Qualified Products Database.
- 4. Color: White
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - Water-Vapor Permeance: ASTM E96/E96M, greater than 1.0 perm at manufacturer's recommended dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Color: White.

2.5 SEALANTS

- A. Materials shall be as recommended by the insulation manufacturer and shall be compatible with insulation materials, jackets, and substrates.
- B. Joint Sealants:
 - 1. Permanently flexible, elastomeric sealant.
 - a. Service Temperature Range: Minus 100 to plus 300 deg F.
 - b. Color: White or gray.
- C. FSK and Metal Jacket Flashing Sealants:
 - 1. Fire- and water-resistant, flexible, elastomeric sealant.
 - 2. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 3. Color: Aluminum.
- D. ASJ Flashing Sealants and PVDC and PVC Jacket Flashing Sealants:
 - 1. Fire- and water-resistant, flexible, elastomeric sealant.
 - 2. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 3. Color: White.

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.
 - ASJ+: Aluminum foil reinforced with glass scrim bonded to a kraft paper interleaving with an outer film leaving no paper exposed; complying with ASTM C1136, Types I, II, III, IV, and VII.
 - 5. PSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C1136, Type II.

Lakeside Union School District

2.7 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C1136, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Adhesive: As recommended by jacket material manufacturer.
 - Color: White.
 - 3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

D. Metal Jacket:

- Aluminum Jacket: Comply with ASTM B209, Alloy 3003, 3005, 3105, or 5005, Temper H-14
 - a. Sheet and roll stock ready for shop or field sizing.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed two-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- E. Underground Direct-Buried Jacket: 125-mil- thick vapor barrier and waterproofing membrane, consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.
- F. Self-Adhesive Outdoor Jacket (Asphaltic): 60-mil- thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a cross-laminated polyethylene film covered with [white] [stucco-embossed] aluminum-foil facing.
- G. Self-Adhesive Indoor/Outdoor Jacket (Non-Asphaltic): Vapor barrier and waterproofing jacket for installation over insulation located aboveground outdoors or indoors. Specialized jacket has five layers of laminated aluminum and polyester film with low-temperature acrylic pressure-

Lakeside Union School District

sensitive adhesive. Outer aluminum surface is coated with UV-resistant coating for protection from environmental contaminants.

- 1. Permeance: 0.00 perm as tested in accordance with ASTM F1249.
- 2. Flamespread/Smoke Developed: 25/50 as tested in accordance with ASTM E84.
- 3. Aluminum Finish: Smooth.
- H. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perm when tested in accordance with ASTM E96/E96M and with a flame-spread index of 10 and a smoke-developed index of 20 when tested in accordance with ASTM E84.
- I. PVDC Jacket for Outdoor Applications: 6-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perm when tested in accordance with ASTM E96/E96M and with a flame-spread index of 25 and a smoke-developed index of 50 when tested in accordance with ASTM E84.
- J. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip.

2.8 FIELD-APPLIED REINFORCING MESH

- A. Woven Glass-Fiber Mesh: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.
- B. Woven Polyester Mesh: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 11.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

Lakeside Union School District

- 1. Width: 2 inches.
- 2. Thickness: 6 mils.
- 3. Adhesion: 64 ounces force/inch in width.
- 4. Elongation: 500 percent.
- 5. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Width: 2 inches .
 - 2. Thickness: 3.7 mils.
 - 3. Adhesion: 100 ounces force/inch in width.
 - 4. Elongation: 5 percent.
 - 5. Tensile Strength: 34 lbf/inch in width.
- E. PVDC Tape for Indoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Width: 3 inches.
 - 2. Film Thickness: 2 mils.
 - 3. Adhesive Thickness: 1.5 mils .
 - 4. Elongation at Break: 120percent.
 - 5. Tensile Strength: 20 psi in width.
- F. PVDC Tape for Outdoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Width: 3 inches.
 - 2. Film Thickness: 6 mils.
 - 3. Adhesive Thickness: 1.5 mils .
 - 4. Elongation at Break: 145 percent.
 - 5. Tensile Strength: 55 psi in width.

2.10 SECUREMENTS

- A. Bands:
 - 1. Stainless Steel: ASTM A240/A240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
 - 2. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
 - 3. Springs: Twin spring set constructed of stainless steel, with ends flat and slotted to accept metal bands. Spring size is determined by manufacturer for application.
- B. Staples: Outward-clinching insulation staples, nominal 3/4 inch wide, stainless steel or Monel.
- C. Wire: 0.080-inch nickel-copper alloy.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

Lakeside Union School District

- B. Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature of between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the tradesman installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and of thicknesses required for each item of pipe system, as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, compress, or otherwise damage insulation or jacket.
- D. Install insulation with longitudinal seams at top and bottom (12 o'clock and 6 o'clock positions) of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet during storage or in the installation process before being properly covered and sealed in accordance with the Contract Documents, unless otherwise approved by the engineer of record.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.

Lakeside Union School District

- 3. Install insert materials and insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth, but not to the extent of creating wrinkles or areas of compression in the insulation.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward-clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward-clinching staples along edge at 2 inches o.c.
 - 4. For below-ambient services, apply vapor-barrier mastic over staples.
 - 5. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.
 - 6. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with ioint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.

Lakeside Union School District

- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials, except where more specific requirements are specified in various pipe insulation material installation articles below.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, Mechanical Couplings, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, mechanical couplings, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using prefabricated fitting insulation or mitered or routed fittings made from same material and density as that of adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - Insulate tee fittings with prefabricated fitting insulation or sectional pipe insulation of same
 material and thickness as that used for adjacent pipe. Cut sectional pipe insulation to fit.
 Butt each section closely to the next and hold in place with tie wire. Bond pieces with
 adhesive.
 - 4. Insulate valves using [prefabricated fitting insulation or sectional pipe insulation of same material, density, and thickness as that used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-

Lakeside Union School District

- box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
- 5. Insulate strainers using prefabricated fitting insulation or sectional pipe insulation of same material, density, and thickness as that used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers, so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges, mechanical couplings, and unions using a section of oversized preformed pipe insulation to fit. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Stencil or label the outside insulation jacket of each union with the word "union" matching size and color of pipe labels.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket, except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing, using PVC tape.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as that of adjoining pipe insulation
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union at least 2 times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 INSTALLATION OF CELLULAR-GLASS INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.

Lakeside Union School District

- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
- 4. For insulation with jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive, as recommended by insulation material manufacturer, and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install prefabricated pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as that of pipe insulation. Where voids are difficult to fill with block insulation, fill the voids with a fibrous insulation material suitable for the specific operating temperature.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When preformed sections of insulation are not available, install mitered or routed sections of cellular-glass insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install prefabricated sections of cellular-glass insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as that of pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:

Lakeside Union School District

- Install sections of pipe insulation and miter if required in accordance with manufacturer's written instructions.
- 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install prefabricated valve covers manufactured of same material as that of pipe insulation when available.
- 2. When prefabricated valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.
- 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF GLASS-FIBER AND MINERAL WOOL INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
 - 4. For insulation with jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive, as recommended by insulation material manufacturer, and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install prefabricated pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with glass-fiber or mineral-wool blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.

Lakeside Union School District

- 2. When prefabricated sections are not available, install fabricated sections of pipe insulation to valve body.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

3.8 INSTALLATION OF POLYOLEFIN INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Seal split-tube longitudinal seams and end joints with manufacturer's recommended adhesive, or via self seal mechanism to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as that of pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of polyolefin pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.9 INSTALLATION OF FIELD-APPLIED JACKETS

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.

Lakeside Union School District

- 2. Install lap or joint strips with same material as jacket.
- 3. Secure jacket to insulation with manufacturer's recommended adhesive.
- 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
- 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated and for horizontal applications, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless steel bands 12 inches o.c. and at end joints.
- E. Where PVDC jackets are indicated, install as follows:
 - 1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
 - 2. Wrap presized jackets around individual pipe insulation sections, with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
 - 3. Continuous jacket can be spiral-wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
 - 4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch- circumference limit allows for 2-inch- overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
 - 5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.10 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

Lakeside Union School District

- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless steel jackets.

3.11 FIELD QUALITY CONTROL

- A. Owner will engage a qualified testing agency to perform tests and inspections.
- B. Engage a qualified testing agency to perform tests and inspections.
- C. Perform tests and inspections with the assistance of a factory-authorized service representative.
- D. Tests and Inspections: Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- E. All insulation applications will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports.

3.12 PIPING INSULATION SCHEDULE, GENERAL

- A. Insulation conductivity and thickness per pipe size shall comply with schedules in this Section or with requirements of authorities having jurisdiction, whichever is more stringent.
- B. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- C. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

3.13 INDOOR PIPING INSULATION SCHEDULE

- A. Condensate and Equipment Drain Water below 60 Deg F:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches thick.
 - b. Flexible Elastomeric: 3/4 inch thick.
 - c. Glass-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
 - d. Mineral Wool, Preformed Pipe Insulation, Type II: 1/2 inch thick.
- B. Refrigerant Suction and Hot-Gas Flexible Tubing:
 - 1. All Pipe Sizes: Insulation shall be one of the following:

Lakeside Union School District

- a. Flexible Elastomeric: 2 inches thick.
- b. Polyolefin: 2 inches thick.

C. Refrigerant Liquid Piping:

- 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches thick.
 - b. Flexible Elastomeric: 1 inch thick.
 - c. Glass-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - d. Mineral Wool, Preformed Pipe Insulation, Type II: 1 inch thick.
 - e. Polyolefin: 1 inch thick.

D. Dual-Service Heating and Cooling, 40 to 200 Deg F:

- 1. NPS 12 and Smaller: Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches thick.
 - b. Flexible Elastomeric: 1 inch thick.
 - c. Glass-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - d. Mineral Wool, Preformed Pipe Insulation, Type II: 1 inch thick.
- 2. NPS 14 and Larger: Insulation shall be one of the following:
 - a. Cellular Glass: 2 inches thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.

3.14 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

3.15 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. PVC: 20 mils thick.
 - 2. Aluminum, Corrugated: 0.020 inch thick.
 - 3. Painted Aluminum, Corrugated: 0.020 inch thick.
- D. Piping, Exposed:
 - 1. PVC: 20 mils thick.
 - 2. Aluminum, Corrugated: 0.016 inch thick.
 - 3. Painted Aluminum, Corrugated: 0.016 inch thick.

3.16 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

Lakeside Union School District

- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. PVC: 30 mils thick.
 - 2. Aluminum, Corrugated: 0.024 inch thick.
 - 3. Painted Aluminum, Corrugated: 0.024 inch thick.
- D. Piping, Exposed:
 - 1. PVC: 30 mils thick.
 - 2. Aluminum, Corrugated with Z-Shaped Locking Seam: 0.024 inch thick.

3.17 UNDERGROUND, FIELD-APPLIED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION

Lakeside Union School District

SECTION 231123

FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipes, tubes, and fittings.
 - 2. Piping specialties.
 - 3. Joining materials.
 - 4. Manual gas shutoff valves.
 - 5. Pressure regulators.
 - 6. Dielectric fittings.

1.2 ACTION SUBMITTALS

- A. Product Data:
 - 1. Piping specialties.
 - 2. Corrugated, stainless steel tubing with associated components.
 - Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 - 4. Pressure regulators. Indicate pressure ratings and capacities.
 - 5. Dielectric fittings.
- B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
 - 1. Shop Drawing Scale: 1/4 inch per foot (1:50).

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.
- B. Certificates:
 - 1. Welding certificates.
- C. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.
- D. Field Quality-Control Submittals:
 - 1. Field quality-control reports.

Lakeside Union School District

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Qualifications:

- 1. Steel Support Welding: Qualify procedures and personnel in accordance with AWS D1.1/D1.1M, "Structural Welding Code Steel."
- 2. Pipe Welding: Qualify procedures and operators in accordance with the ASME Boiler and Pressure Vessel Code.

1.6 PROJECT CONDITIONS

- A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.
- B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide purging and startup of natural-gas supply in accordance with requirements indicated:
 - 1. Notify Architect no fewer than two days in advance of proposed interruption of naturalgas service.
 - 2. Do not proceed with interruption of natural-gas service without Architect's written permission.

1.7 COORDINATION

- A. Coordinate requirements for access panels and doors for valves installed and concealed behind finished surfaces. Comply with requirements in Section 083113 "Access Doors and Frames."
- B. Coordinate requirements for piping identification for natural-gas piping. Comply with requirements in Section 220553 "Identification of Plumbing Piping and Equipment."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with NFPA 54 and 2022 CPC.
- B. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig (690 kPa) minimum unless otherwise indicated.
 - 2. Service Regulators: 65 psig (450 kPa) minimum unless otherwise indicated.
 - 3. Minimum Operating Pressure of Service Meter: 5 psig (34.5 kPa).
- C. Natural-Gas System Pressure within Buildings:

Lakeside Union School District

- 1. Two pressure ranges. Primary pressure is more than 0.5 psig (3.45 kPa), but not more than 2 psig (13.8 kPa), and is reduced to secondary pressure of 0.5 psig (3.45 kPa) or less.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A53/A53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A234/A234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 - 4. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 - a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.
- B. PE Pipe: ASTM D2513, SDR 11.
 - 1. PE Fittings: ASTM D2683, socket-fusion type or ASTM D3261, butt-fusion type with dimensions matching PE pipe.
 - 2. PE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D2513, SDR 11; and steel pipe complying with ASTM A53/A53M, black steel, Schedule 40, Type E or S, Grade B.
 - 3. Anodeless Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D2513, SDR 11 inlet.
 - b. Casing: Steel pipe complying with ASTM A53/A53M, Schedule 40, black steel, Type E or S, Grade B, with corrosion-protective coating covering. Vent casing aboveground.
 - c. Aboveground Portion: PE transition fitting.
 - d. Outlet is threaded or flanged or suitable for welded connection.
 - e. Tracer wire connection.
 - f. UV shield.
 - g. Stake supports with factory finish to match steel pipe casing or carrier pipe.
 - 4. Transition Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D2513, SDR 11 inlet connected to steel pipe complying with ASTM A53/A53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.
 - b. Outlet is threaded or flanged or suitable for welded connection.
 - c. Bridging sleeve over mechanical coupling.
 - d. Factory-connected anode.
 - e. Tracer wire connection.
 - f. UV shield.
 - g. Stake supports with factory finish to match steel pipe casing or carrier pipe.

Lakeside Union School District

2.3 PIPING SPECIALTIES

A. Appliance Flexible Connectors:

- 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
- 2. Indoor, Movable-Appliance Flexible Connectors: Comply with ANSI Z21.69.
- 3. Outdoor, Appliance Flexible Connectors: Comply with ANSI Z21.75.
- 4. Corrugated, stainless steel tubing with polymer coating.
- 5. Operating-Pressure Rating: 0.5 psig (3.45 kPa).
- 6. End Fittings: Zinc-coated steel.
- 7. Threaded Ends: Comply with ASME B1.20.1.
- 8. Maximum Length: 72 inches (1830 mm).

B. Y-Pattern Strainers:

- 1. Body: ASTM A126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
- 3. Strainer Screen: 60-mesh startup strainer, and perforated stainless steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig (862 kPa).

C. Weatherproof Vent Cap:

1. Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.4 JOINING MATERIALS

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F (540 deg C) complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.5 MANUAL GAS SHUTOFF VALVES

- A. See "Underground, Manual Gas Shutoff Valve Schedule" and "Aboveground, Manual Gas Shutoff Valve Schedule" articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 (DN 50) and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig (862 kPa).
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground, Manual Gas Shutoff Valve Schedule" and "Aboveground, Manual Gas Shutoff Valve Schedule" articles.

Lakeside Union School District

- 5. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch (25 mm) and smaller.
- 6. Service Mark: Valves NPS 1-1/4 to NPS 2 (DN 32 to DN 50) having initials "WOG" permanently marked on valve body.
- C. General Requirements for Metallic Valves, NPS 2-1/2 (DN 65) and Larger: Comply with ASME B16.38.
 - 1. CWP Rating: 125 psig (862 kPa).
 - 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 - 3. Tamperproof Feature: Locking feature for valves indicated in "Underground, Manual Gas Shutoff Valve Schedule" and "Aboveground, Manual Gas Shutoff Valve Schedule" articles.
 - 4. Service Mark: Initials "WOG" permanently marked on valve body.
- D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. Body: Bronze, complying with ASTM B584.
 - 2. Ball: Chrome-plated bronze.
 - 3. Stem: Bronze; blowout proof.
 - 4. Seats: Reinforced TFE; blowout proof.
 - 5. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 6. Ends: Threaded, flared, or socket as indicated in "Underground, Manual Gas Shutoff Valve Schedule" and "Aboveground, Manual Gas Shutoff Valve Schedule" articles.
 - 7. CWP Rating: 600 psig (4140 kPa).
 - 8. Listing: Valves NPS 1 (DN 25) and smaller are to be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 9. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- E. Bronze Plug Valves: MSS SP-78.
 - 1. Body: Bronze, complying with ASTM B584.
 - 2. Plug: Bronze.
 - 3. Ends: Threaded, socket, or flanged as indicated in "Underground, Manual Gas Shutoff Valve Schedule" and "Aboveground, Manual Gas Shutoff Valve Schedule" articles.
 - 4. Operator: Square head or lug type with tamperproof feature where indicated.
 - 5. Pressure Class: 125 psig (862 kPa).
 - 6. Listing: Valves NPS 1 (DN 25) and smaller are to be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 7. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. PE Ball Valves: Comply with ASME B16.40.
 - 1. Body: PE.
 - 2. Ball: PE.
 - 3. Stem: Acetal.
 - 4. Seats and Seals: Nitrile.
 - 5. Ends: Plain or fusible to match piping.
 - 6. CWP Rating: 80 psig (552 kPa).
 - 7. Operating Temperature: Minus 20 to plus 140 deg F (Minus 29 to plus 60 deg C).
 - 8. Operator: Nut or flat head for key operation.
 - 9. Include plastic valve extension.
 - 10. Include tamperproof locking feature for valves where indicated on Drawings.
- G. Valve Boxes:
 - 1. Cast-iron, two-section box.
 - 2. Top section with cover with "GAS" lettering.
 - 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches (125 mm) in diameter.

Lakeside Union School District

- 4. Adjustable cast-iron extensions of length required for depth of bury.
- 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.6 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.
 - 4. End Connections: Threaded for regulators NPS 2 (DN 50) and smaller; flanged for regulators NPS 2-1/2 (DN 65) and larger.
- B. Line Pressure Regulators: Comply with ANSI Z21.80A.
 - 1. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 - 2. Springs: Zinc-plated steel; interchangeable.
 - 3. Diaphragm Plate: Zinc-plated steel.
 - 4. Seat Disc: NBR; resistant to gas impurities, abrasion, and deformation at the valve port.
 - 5. Orifice: Aluminum; interchangeable.
 - 6. Seal Plug: UV-stabilized, mineral-filled nylon.
 - 7. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to regulator.
 - 8. Pressure regulator is to maintain discharge pressure setting downstream and is to not exceed 150 percent of design discharge pressure at shutoff.
 - 9. Overpressure Protection Device: Factory mounted on pressure regulator.
 - 10. Atmospheric Vent: Factory- or field-installed, stainless steel screen in opening if not connected to vent piping.
 - 11. Maximum Inlet Pressure: 5 psig (34.5 kPa).

2.7 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C.
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.8 LABELING AND IDENTIFYING

- A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description and rated pressure of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches (750 mm) deep; colored yellow.
- B. Label and identify gas piping and pressure outside a multitenant building by tenant.

Lakeside Union School District

PART 3 - EXECUTION

3.1 PREPARATION

- A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
- B. Inspect natural-gas piping in accordance with NFPA 54 and 2022 CPC to determine that natural-gas utilization devices are turned off in piping section affected.
- C. Comply with NFPA 54 and 2022 CPC requirements for preventing accidental ignition.

3.2 INSTALLATION OF OUTDOOR PIPING

- A. Comply with NFPA 54 and 2022 CPC for installation and purging of natural-gas piping.
- B. Install underground, natural-gas piping buried at least 36 inches (900 mm) below finished grade. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.
 - If natural-gas piping is installed less than 36 inches (900 mm) below finished grade, install it in containment conduit.
- C. Install underground, PE, natural-gas piping in accordance with ASTM D2774.
- D. Steel Piping with Protective Coating:
 - 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 - 3. Replace pipe having damaged PE coating with new pipe.
- E. Install fittings for changes in direction and branch connections.
- F. Install pressure gauge upstream and downstream from each service regulator. Pressure gauges are specified in Section 230519 "Meters and Gauges for HVAC Piping."

3.3 INSTALLATION OF INDOOR PIPING

- A. Comply with NFPA 54 and 2022 CPC for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Do not install piping in concealed locations unless sleeved with the sleeve open at both ends.

Lakeside Union School District

- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Where installing piping above accessible ceilings, allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access. Do not locate valves within return air plenums.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Verify final equipment locations for roughing-in.
- K. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- L. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches (75 mm) long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- M. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- N. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- O. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- P. Connect branch piping from top or side of horizontal piping.
- Q. Install unions in pipes NPS 2 (DN 50) and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.
- R. Do not use natural-gas piping as grounding electrode.
- S. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- T. Install pressure gauge downstream from each line regulator. Pressure gauges are specified in Section 230519 "Meters and Gauges for HVAC Piping."
- U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

Lakeside Union School District

3.4 INSTALLATION OF VALVES

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless steel tubing, aluminum, or copper connector.
- B. Install underground valves with valve boxes.
- C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.
- D. Install earthquake valves aboveground outside buildings according to listing.
- E. Install anode for metallic valves in underground PE piping.
- F. Do not install valves in return-air plenums.

3.5 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 - 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 - 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:

- Construct joints in accordance with AWS D10.12/D10.12M, using qualified processes and welding operators.
- 2. Bevel plain ends of steel pipe.
- 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- E. Brazed Joints: Construct joints in accordance with AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- F. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, and then use wrench. Do not overtighten.
- G. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join in accordance with ASTM D2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

Lakeside Union School District

3.6 INSTALLATION OF HANGERS AND SUPPORTS

- A. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."
- B. Comply with requirements in Section 230529 "Hangers and Supports for HVAC Piping and Equipment" for hangers, supports, and anchor devices.
- C. Install hangers for steel piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- D. Support horizontal piping within 12 inches (300 mm) of each fitting.
- E. Support vertical runs of steel piping to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- F. Support vertical runs of corrugated stainless steel tubing to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.7 PIPING CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous, and bonded to gas-appliance equipment grounding conductor of the circuit powering the appliance in accordance with NFPA 70.
- C. Where installing piping adjacent to appliances, allow space for service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches (1800 mm) of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

3.8 LABELING AND IDENTIFICATION

A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.

3.9 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Test, inspect, and purge natural gas in accordance with NFPA 54 and 2022 CPC and authorities having jurisdiction.
 - 2. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- B. Prepare test and inspection reports.

Lakeside Union School District

3.10 OUTDOOR PIPING SCHEDULE

- A. Underground natural-gas piping is to be one of the following:
 - 1. PE pipe and fittings joined by heat fusion; service-line risers with tracer wire terminated in an accessible location.
 - 2. Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
 - 3. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
- B. Aboveground natural-gas piping is to be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.

3.11 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG (3.45 kPa)

- A. Aboveground, branch piping NPS 1 (DN 25) and smaller is to be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
- B. Aboveground, distribution piping is to be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
- C. Underground, below building, piping is to be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
 - 3. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
 - 4. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground portion of vent pipe and fittings with protective coating for steel piping.

3.12 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG (3.45 kPa) AND LESS THAN OR EQUAL TO 2 PSIG (13.8 kPa)

- A. Aboveground, branch piping NPS 1 (DN 25) and smaller is to be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
- B. Aboveground, distribution piping is to be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with steel welding fittings and welded joints.
- C. Underground, below building, piping is to be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
 - 3. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat underground pipe and fittings with protective coating for steel piping.

Lakeside Union School District

4. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground portion of vent pipe and fittings with protective coating for steel piping.

3.13 UNDERGROUND, MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.
- B. Underground:
 - PE valves.
 - 2. NPS 2 (DN 50) and Smaller: Bronze plug valves.

3.14 ABOVEGROUND, MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 (DN 50) and smaller at service meter are to be one of the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.
- B. Distribution piping valves for pipe sizes NPS 2 (DN 50) and smaller are to be one of the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.
- C. Valves in branch piping for single appliance are to be one of the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.

END OF SECTION

Lakeside Union School District

SECTION 233113

METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Single-wall rectangular ducts and fittings.
- 2. Single-wall round ducts and fittings.
- 3. Sheet metal materials.
- 4. Duct liner.
- 5. Sealants and gaskets.
- Hangers and supports.
- 7. Seismic-restraint devices.

B. Related Sections:

- 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
- 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.
 - Seismic-restraint devices.

B. Shop Drawings:

- 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
- 2. Factory- and shop-fabricated ducts and fittings.
- 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
- 4. Elevation of top of ducts.
- 5. Dimensions of main duct runs from building grid lines.
- 6. Fittings.
- 7. Reinforcement and spacing.

Lakeside Union School District

- 8. Seam and joint construction.
- 9. Penetrations through fire-rated and other partitions.
- 10. Equipment installation based on equipment being used on Project.
- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: A single set of plans or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.
- B. Welding certificates.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel in accordance with the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
 - 3. AWS D9.1/D9.1M, "Sheet Metal Welding Code," for duct joint and seam welding.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and with performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and ASCE/SEI 7.
- C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.
- D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment," and Section 7 "Construction and System Startup."
- E. Duct Dimensions: Unless otherwise indicated, all duct dimensions indicated on Drawings are inside clear dimensions and do not include insulation or duct wall thickness.

Lakeside Union School District

2.2 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
 - 1. Construct ducts of galvanized sheet steel unless otherwise indicated.
 - 2. For ducts exposed to weather, construct of Type 304 or Type 316 stainless steel indicated by manufacturer to be suitable for outdoor installation.
- B. Transverse Joints: Fabricate joints in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. For ducts with longest side less than 36 inches, select joint types in accordance with Figure 2-1.
 - 2. For ducts with longest side 36 inches or greater, use flange joint connector Type T-22, T-24, T-24A, T-25a, or T-25b. Factory-fabricated flanged duct connection system may be used if submitted and approved by engineer of record.
 - 3. Where specified for specific applications, all joints shall be welded.
- C. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Where specified for specific applications, all joints shall be welded.
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Ch. 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.3 SINGLE-WALL ROUND AND FLAT OVAL DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Ch. 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Construct ducts of galvanized sheet steel unless otherwise indicated.
 - 2. For ducts exposed to weather, construct of Type 304 or Type 316 stainless steel indicated by manufacturer to be suitable for outdoor installation.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).
- C. Transverse Joints: Select joint types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

Lakeside Union School District

- 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- D. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
- E. Tees and Laterals: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.4 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A653/A653M.
 - Galvanized Coating Designation: G60.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Carbon-Steel Sheets: Comply with ASTM A1008/A1008M, with oiled, matte finish for exposed ducts.
- D. Stainless-Steel Sheets: Comply with ASTM A480/A480M, Type 304 or 316, as indicated in "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in "Duct Schedule" Article.
- E. Aluminum Sheets: Comply with ASTM B209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- F. Factory- or Shop-Applied Antimicrobial Coating:
 - 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 - 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested in accordance with ASTM D3363.
 - 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.
 - 5. Shop-Applied Coating Color: Black.

Lakeside Union School District

- 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.
- G. Reinforcement Shapes and Plates: ASTM A36/A36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- H. Tie Rods: Galvanized steel, 1/4-inch- minimum diameter for lengths 36 inches or less; 3/8-inch-minimum diameter for lengths longer than 36 inches.

2.5 DUCT LINER

- A. Fibrous-Glass Duct Liner: Comply with ASTM C1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 2. [Solvent] [Water]-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C916.
- B. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C534/C534M, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
 - Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.
 - 2. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
- C. Fiberglass-Free Duct Liner: Made from partially recycled cotton or polyester products and containing no fiberglass. Airstream surface overlaid with fire-resistant facing to prevent surface erosion by airstream, complying with NFPA 90A or NFPA 90B. Treat natural-fiber products with antimicrobial coating.
 - 1. Maximum Thermal Conductivity: 0.24 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature when tested in accordance with ASTM C518.
 - 2. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested in accordance with ASTM E84; certified by an NRTL.
 - 3. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.

D. Insulation Pins and Washers:

- 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
- 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick stainless steel; with beveled edge sized as required to hold insulation securely in place, but not less than 1-1/2 inches in diameter.

Lakeside Union School District

- E. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."
 - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 - 3. Butt transverse joints without gaps, and coat joint with adhesive.
 - 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure buttededge overlapping.
 - 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 - 6. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
 - 7. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.
 - c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
 - 8. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 - a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
 - 9. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.6 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches.
 - 3. Sealant: Modified styrene acrylic.
 - Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.

Lakeside Union School District

- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
 - 10. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
 - 11. Service: Indoor or outdoor.
 - 12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Flanged Joint Sealant: Comply with ASTM C920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- F. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.7 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Galvanized-steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A492.

Lakeside Union School District

- F. Steel Cable End Connections: Galvanized-steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.8 SEISMIC-RESTRAINT DEVICES

- A. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 - Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- B. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.
- C. Restraint Cables: ASTM A492, stainless-steel cables with end connections made of galvanizedsteel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.
- D. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- E. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested in accordance with ASTM E488/E488M.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and coordination drawings.
- B. Install ducts in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install ducts in maximum practical lengths with fewest possible joints.

Lakeside Union School District

- D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- G. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- H. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- I. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- J. Install fire[, combination fire/smoke,] and smoke dampers where indicated on Drawings and as required by code, and by local authorities having jurisdiction. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers and specific installation requirements of the damper UL listing.
- K. Install heating coils, cooling coils, air filters, dampers, and all other duct-mounted accessories in air ducts where indicated on Drawings.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials both before and after installation. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."
- M. Elbows: Use long-radius elbows wherever they fit.
 - 1. Fabricate 90-degree rectangular mitered elbows to include turning vanes.
 - 2. Fabricate 90-degree round elbows with a minimum of three segments for 12 inches and smaller and a minimum of five segments for 14 inches and larger.
- N. Branch Connections: Use lateral or conical branch connections.

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

Lakeside Union School District

- 3.3 Repair or replace damaged sections and finished work that does not comply with these requirements. ADDITIONAL INSTALLATION REQUIREMENTS FOR TYPE 1 COMMERCIAL KITCHEN GREASE HOOD EXHAUST DUCT
 - A. Install ducts in accordance with NFPA 96, "Ventilation Control and Fire Protection of Commercial Cooking Operation"; SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; and SMACNA's "Kitchen Ventilation Systems and Food Service Equipment Fabrication and Installation Guidelines" unless otherwise indicated.
 - B. Install all ducts without dips and traps that may hold grease, and sloped a minimum of 2 percent to drain grease back to the hood.
 - C. All ducts exposed to view shall be constructed of stainless steel as per "Duct Schedule" Article.

 All ducts concealed from view shall be [stainless] [carbon] steel as per "Duct Schedule" Article.
 - D. All joints shall be welded and shall be telescoping, bell, or flange joint as per NFPA 96.
 - E. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 12 feet in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings.
 - F. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

G.

3.4 DUCTWORK EXPOSED TO WEATHER

- A. All external joints are to be welded, have secure watertight mechanical connections. Seal all openings to provide weatherproof construction.
- B. Construct ductwork to resist external loads of wind, snow, ice, and other effects of weather. Provide necessary supporting structures.
- C. Single Wall:
 - 1. Ductwork shall be Type 304 or Type 316 stainless steel.
 - 2. Ductwork shall be galvanized steel.
 - a. If duct outer surface is uninsulated, protect outer surface with suitable paint. Paint materials and application requirements are specified in Section 099113 "Exterior Painting."
 - 3. Where ducts have external insulation, provide weatherproof aluminum jacket. See Section 230713 "Duct Insulation."

3.5 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts at a minimum to the following seal classes in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible":

Lakeside Union School District

- 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- 2. Outdoor, Supply-Air Ducts: Seal Class A.
- 3. Outdoor, Exhaust Ducts: Seal Class C.
- 4. Outdoor, Return-Air Ducts: Seal Class C.
- Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
- 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
- 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
- 8. Unconditioned Space, Return-Air Ducts: Seal Class B.
- 9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
- Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
- 11. Conditioned Space, Exhaust Ducts: Seal Class B.
- 12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.7 SEISMIC-RESTRAINT-DEVICE INSTALLATION

A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."

Lakeside Union School District

- 1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
- 2. Brace a change of direction longer than 12 feet.
- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on ducts that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:
 - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.8 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.9 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

Lakeside Union School District

- a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections[, selected by Architect from sections installed,] totaling no less than 25 percent of total installed duct area for each designated pressure class.
- b. Supply Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 50 percent of total installed duct area for each designated pressure class.
- c. Return Ducts with a Pressure Class of 2- wg or Higher: Test representative duct sections totaling no less than 50 percent of total installed duct area for each designated pressure class.
- d. Exhaust Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 50 percent of total installed duct area for each designated pressure class.
- e. Outdoor-Air Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 50 percent of total installed duct area for each designated pressure class.
- 2. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
- 3. Testing of each duct section is to be performed with access doors, coils, filters, dampers, and other duct-mounted devices in place as designed. No devices are to be removed or blanked off so as to reduce or prevent additional leakage.
- 4. Test for leaks before applying external insulation.
- 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
- 6. Give [seven] < Insert number > days' advance notice for testing.

B. Duct System Cleanliness Tests:

- 1. Visually inspect duct system to ensure that no visible contaminants are present.
- 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness in accordance with "Description of Method 3 NADCA Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- C. Duct system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.11 DUCT CLEANING

- A. Clean new duct system(s) before testing, adjusting, and balancing.
- B. For cleaning of existing ductwork, see Section 230130.52 "Existing HVAC Air Distribution System Cleaning."
- C. Use duct cleaning methodology as indicated in NADCA ACR.
- D. Use service openings for entry and inspection.
 - 1. Provide openings with access panels appropriate for duct static-pressure and leakage class at dampers, coils, and any other locations where required for inspection and

Lakeside Union School District

cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.

- 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
- 3. Remove and reinstall ceiling to gain access during the cleaning process.

E. Particulate Collection and Odor Control:

- 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
- 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

F. Clean the following components by removing surface contaminants and deposits:

- 1. Air outlets and inlets (registers, grilles, and diffusers).
- 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
- 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
- 4. Coils and related components.
- 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
- 6. Supply-air ducts, dampers, actuators, and turning vanes.
- 7. Dedicated exhaust and ventilation components and makeup air systems.

G. Mechanical Cleaning Methodology:

- 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
- 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
- 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
- 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
- 5. Clean coils and coil drain pans in accordance with NADCA ACR. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
- 6. Provide drainage and cleanup for wash-down procedures.
- 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents in accordance with manufacturer's written instructions after removal of surface deposits and debris.

3.12 STARTUP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

Lakeside Union School District

3.13 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:
 - 1. Fabricate all ducts to achieve SMACNA pressure class, seal class, and leakage class as indicated below.

B. Supply Ducts:

- 1. Ducts Connected toDuct Furnaces, Heat Pumps:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 16.
 - d. SMACNA Leakage Class for Round and Flat Oval: 16.

C. Return Ducts:

- Ducts Connected to Heat Pumps:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 16.
 - d. SMACNA Leakage Class for Round and Flat Oval 16.
- 2. Ducts Connected to Commercial Kitchen Hoods: Comply with NFPA 96.
 - a. Exposed to View: Type 304, stainless-steel sheet, No. 4 finish.
 - b. Concealed: Type 304, stainless-steel sheet, No. 2D finish.
 - c. Welded seams and joints.
 - d. Pressure Class: Positive or negative 3- inch wg.
 - e. Airtight/watertight.

D. Intermediate Reinforcement:

- 1. Galvanized-Steel Ducts: Galvanized steel.
- 2. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
- 3. Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

E. Liner:

- 1. Supply-Air Ducts: Fibrous glass, Type I 1 inch thick.
- 2. Return-Air Ducts: Fibrous glass, Type I 1 inch thick.

F. Elbow Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:

Lakeside Union School District

- 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
- 2) Mitered Type RE 4 without vanes.
- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam or Welded.
- G. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Conical spin in.
 - 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.

END OF SECTION

Lakeside Union School District

SECTION 233300

AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Backdraft and pressure relief dampers.
- 2. Manual volume dampers.
- 3. Control dampers.
- 4. Flange connectors.
- 5. Turning vanes.
- 6. Duct-mounted access doors.
- 7. Duct access panel assemblies.
- 8. Flexible connectors.
- 9. Duct accessory hardware.

B. Related Requirements:

- 1. Section 233346 "Flexible Ducts" for insulated and non-insulated flexible ducts.
- Section 284621.11 "Addressable Fire-Alarm Systems" for duct-mounted fire and smoke detectors.
- 3. Section 284621.13 "Conventional Fire-Alarm Systems" for duct-mounted fire and smoke detectors.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For duct silencers, include pressure drop, dynamic insertion loss, and self-generated noise data. Include breakout noise calculations for high-transmission-loss casings.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail duct accessories' fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control-damper installations.
 - d. Include diagrams for power, signal, and control wiring.

Lakeside Union School District

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, or BIM model, drawn to scale, and coordinated with each other, using input from installers of the items involved.
- B. Source quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with NFPA 90A and NFPA 90B.
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Nailor Industries. Inc.
 - 3. Ruskin Company.
 - 4. Or Equal.
- B. Description: Gravity balanced.
- C. Performance:
 - 1. Maximum Air Velocity: 1250 fpm.
 - 2. Maximum System Pressure: 2 inches wg.
 - 3. Leakage:
 - a. Class IA: Leakage shall not exceed 3 cfm/sq. ft. against 1-inch wg differential static pressure.
 - b. Class I: Leakage shall not exceed 4 cfm/sq. ft. against 1-inch wg differential static pressure.
 - c. Class II: Leakage shall not exceed 10 cfm/sq. ft. against 1-inch wg differential static pressure.
 - d. Class III: Leakage shall not exceed 40 cfm/sq. ft. against 1-inch wg differential static pressure.
- D. Construction:

Lakeside Union School District

- 1. Frame:
 - a. Hat shaped.
 - b. 10-gauge- thick, galvanized sheet steel, with welded or mechanically attached corners and mounting flange.
- 2. Blades:
 - a. Multiple single-piece blades.
 - b. Center pivoted, maximum 6-inch width, 0.050-inch- thick aluminum sheet with sealed edges.
- 3. Blade Action: Parallel.
- E. Blade Seals: Neoprene, mechanically locked.
- F. Blade Axles:
 - Material: Galvanized steel.
 - 2. Diameter: 0.20 inch.
- G. Tie Bars and Brackets: Galvanized steel.
- H. Return Spring: Adjustable tension.
- I. Bearings: Steel ball.
- J. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Chain pulls.
 - Screen Mounting:
 - a. Front mounted in sleeve.
 - 1) Sleeve Thickness: 20 gauge minimum.
 - 2) Sleeve Length: 6 inches minimum.
 - 5. Screen Material: Galvanized steel.
 - 6. Screen Type: Insect.
 - 7. 90-degree stops.

2.3 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Performance:
 - Leakage Rating Class III: Leakage not exceeding 40 cfm/sq. ft. against 1-inch wg differential static pressure.
 - 2. Construction:

Lakeside Union School District

- a. Linkage out of airstream.
- b. Suitable for horizontal or vertical airflow applications.

3. Frames:

- a. Hat-shaped, 16-gauge- thick, galvanized sheet steel.
- b. Mitered and welded corners.
- c. Flanges for attaching to walls and flangeless frames for installing in ducts.

4. Blades:

- a. Multiple or single blade.
- b. Parallel- or opposed-blade design.
- c. Stiffen damper blades for stability.
- d. Galvanized steel; 16 gauge thick.
- 5. Blade Axles: Galvanized steel.
- 6. Bearings:
 - a. Molded synthetic.
 - b. Dampers mounted with vertical blades to have thrust bearing at each end of every blade.
- 7. Tie Bars and Brackets: Galvanized steel.
- 8. Locking device to hold damper blades in a fixed position without vibration.

B. Jackshaft:

- 1. Size: 0.5-inch diameter.
- 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
- 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

C. Damper Hardware:

- 1. Zinc-plated, die-cast core with dial and handle, made of 3/32-inch- thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
- 2. Include center hole to suit damper operating-rod size.
- 3. Include elevated platform for insulated duct mounting.

2.4 CONTROL DAMPERS

A. General Requirements:

- Unless otherwise indicated, use parallel-blade configuration for two-position control, equipment isolation service, and when mixing two airstreams. For other applications, use opposed-blade configuration.
- 2. Factory or field assemble multiple damper sections to provide a single damper assembly of size required by the application.

B. Performance:

1. AMCA Certification: Test and rate in accordance with AMCA 511.

Lakeside Union School District

2. Leakage:

- a. Class IA: Leakage shall not exceed 3 cfm/sq. ft. against 1-inch wg differential static pressure.
- Class I: Leakage shall not exceed 4 cfm/sq. ft.against 1-inch wg differential static pressure.
- c. Class II: Leakage shall not exceed 10 cfm/sq. ft. against 1-inch wg differential static pressure.
- d. Class III: Leakage shall not exceed 40 cfm/sq. ft. against 1-inch wg differential static pressure.
- 3. Pressure Drop: 0.05 inch wg at 1500 fpm across a 24-by-24-inch damper when tested in accordance with AMCA 500-D, Figure 5.3.
- 4. Temperature: Minus 25 to plus 180 deg F.
- 5. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.

C. Construction:

- 1. Linkage out of airstream.
- 2. Suitable for horizontal or vertical airflow applications.
- Frames:
 - a. Hat, U, or angle shaped.
 - b. 16-gauge- thick, galvanized sheet steel.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.

4. Blades:

- a. Multiple blade with maximum blade width of 6 inches.
- b. Parallel or Opposed-blade design.
- c. Galvanized steel.
- d. 16-gauge- thick single skin or 14-gauge- thick air foil dual skin.

5. Blade Edging Seals:

- a. Replaceable Closed-cell neoprene
- 6. Blade Jamb Seal: Flexible stainless steel, compression type.
- 7. Blade Axles: 1/2-inch diameter; galvanized, stainless steel.
- 8. Blade-Linkage Hardware: Zinc-plated steel and brass; ends sealed against blade bearings. Linkage mounted out of air stream.
- 9. Bearings:
 - a. Molded synthetic.
 - b. Dampers mounted with vertical blades to have thrust bearings at each end of every blade.

2.5 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

Lakeside Union School District

- 1. Ductmate Industries, Inc.
- 2. Nexus PDQ.
- 3. Ward Industries; a brand of Hart & Cooley, Inc.
- 4. Or Equal.
- B. Description: Add-on or roll-formed, factory fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gauge and Shape: Match connecting ductwork.

2.6 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. METALAIRE, Inc.
 - 3. SEMCO Incorporated.
 - Or Equal.
- B. Manufactured Turning Vanes for Metal Ducts: Fabricate curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- E. Vane Construction:
 - 1. Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.7 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. 3M.
 - 2. Ductmate Industries, Inc.
 - 3. Flame Gard, Inc.
 - 4. Or Equal.

Lakeside Union School District

2.8 DUCT ACCESS PANEL ASSEMBLIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. 3M.
 - 2. Ductmate Industries, Inc.
 - 3. Flame Gard, Inc.
 - 4. Or Equal.
- B. Access panels used in cooking applications:
 - 1. Labeled compliant to NFPA 96 for grease duct access doors.
 - 2. Labeled in accordance with UL 1978 by an NRTL.
- C. Panel and Frame: Minimum thickness 16-gauge carbon steel.
- D. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.
- E. Gasket: Comply with NFPA 96, grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.
- F. Minimum Pressure Rating: 10 inches wg positive or negative.

2.9 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Ventfabrics, Inc.
 - 3. Ward Industries; a brand of Hart & Cooley, Inc.
 - 4. Or Equal.
- B. Fire-Performance Characteristics: Adhesives, sealants, fabric materials, and accessory materials shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested in accordance with ASTM E84.
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Materials: Flame-retardant or noncombustible fabrics.
- E. Coatings and Adhesives: Comply with UL 181, Class 1.
- F. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch-wide, thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Provide metal compatible with connected ducts.
- G. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. vd.
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.

Lakeside Union School District

- H. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd.
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.
- I. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.10 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

2.11 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A653/A653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Stainless Steel Sheets: Comply with ASTM A480/A480M, Type 304, and having a No. 2 finish for concealed ducts and finish for exposed ducts.
- C. Aluminum Sheets: Comply with ASTM B209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, one-side bright finish for exposed ducts.
- D. Extruded Aluminum: Comply with ASTM B221, Alloy 6063, Temper T6.
- E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless steel ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

Lakeside Union School District

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories in accordance with applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116 for fibrousglass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless steel accessories in stainless steel ducts, and aluminum accessories in aluminum ducts.
- C. Where multiple damper sections are necessary to achieve required dimensions, provide reinforcement to fully support damper assembly when fully closed at full system design static pressure.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated and as needed for testing and balancing.
- G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 2. At each change in direction and at maximum 50-ft. spacing.
 - 3. Upstream and downstream from turning vanes.
 - 4. For grease ducts, install at locations and spacing as required by NFPA 96.
 - 5. Control devices requiring inspection.
 - 6. Elsewhere as indicated.
- H. Install access doors with swing against duct static pressure.
- I. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- J. Install flexible connectors to connect ducts to equipment.
- K. Install duct test holes where required for testing and balancing purposes.

Lakeside Union School District

L. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors, and verify that size and location of access doors are adequate to perform required operation.
 - 3. Inspect turning vanes for proper and secure installation, and verify that vanes do not move or rattle.
 - 4. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION

Lakeside Union School District

SECTION 233346

FLEXIBLE DUCTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Non-insulated flexible ducts.
 - 2. Insulated flexible ducts.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For flexible ducts.
 - 1. Include plans showing locations and mounting and attachment details.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, and coordinated with each other, using input from installers of the items involved.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- C. Comply with the Air Diffusion Council's "ADC Flexible Air Duct Test Code FD 72-R1."
- D. Comply with ASTM E96/E96M, "Test Methods for Water Vapor Transmission of Materials."

2.2 NON-INSULATED FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

Lakeside Union School District

- 1. Flexmaster U.S.A., Inc.
- 2. McGill AirFlow LLC.
- 3. Ward Industries; a brand of Hart & Cooley, Inc.
- 4. Or Equal.
- B. Non-Insulated, Flexible Duct: UL 181, Class 1, two-ply vinyl film supported by helically wound, spring-steel wire.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 10 to plus 160 deg F.
- C. Non-Insulated, Flexible Duct: UL 181, Class 1, multiple layers of aluminum laminate supported by helically wound, spring-steel wire.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 20 to plus 210 deg F.

2.3 INSULATED FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flexmaster U.S.A., Inc.
 - 2. McGill AirFlow LLC.
 - 3. Ward Industries; a brand of Hart & Cooley, Inc.
 - 4. Or Equal.
- B. Insulated, Flexible Duct: UL 181, Class 1, two-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; [polyethylene] [aluminized] vapor-barrier film.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 10 to plus 160 deg F.
 - 4. Insulation R-Value: Comply with ASHRAE/IES 90.1.
- C. Insulated, Flexible Duct: UL 181, Class 1, multiple layers of aluminum laminate supported by helically wound, spring-steel wire; fibrous-glass insulation; [polyethylene] [aluminized] vapor-barrier film.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 20 to plus 210 deg F.
 - 4. Insulation R-Value: Comply with ASHRAE/IES 90.1.

Lakeside Union School District

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install flexible ducts according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install in indoor applications only. Flexible ductwork should not be exposed to UV lighting.
- C. Connect diffusers or light troffer boots to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.
- D. Connect flexible ducts to metal ducts with adhesive plus sheet metal screws.
- E. Install duct test holes where required for testing and balancing purposes.
- F. Installation:
 - 1. Install ducts fully extended.
 - 2. Do not bend ducts across sharp corners.
 - 3. Bends of flexible ducting shall not exceed a minimum of one duct diameter.
 - 4. Avoid contact with metal fixtures, water lines, pipes, or conduits.
 - 5. Install flexible ducts in a direct line, without sags, twists, or turns.

G. Supporting Flexible Ducts:

- 1. Suspend flexible ducts with bands 1-1/2 inches wide or wider and spaced a maximum of 48 inches apart. Maximum centerline sag between supports shall not exceed 1/2 inch per 12 inches.
- 2. Install extra supports at bends placed approximately one duct diameter from center line of the bend.
- 3. Ducts may rest on ceiling joists or truss supports. Spacing between supports shall not exceed the maximum spacing per manufacturer's written installation instructions.
- 4. Vertically installed ducts shall be stabilized by support straps at a maximum of 72 inches o.c.

END OF SECTION

Lakeside Union School District

SECTION 233423

HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Centrifugal ventilators roof upblast

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes for fans.
 - 2. Rated capacities, operating characteristics, and furnished specialties and accessories.
 - 3. Certified fan performance curves with system operating conditions indicated.
 - 4. Certified fan sound-power ratings.
 - 5. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 6. Material thickness and finishes, including color charts.
 - 7. Dampers, including housings, linkages, and operators.
 - 8. Prefabricated roof curbs.
 - 9. Fan speed controllers.

B. Shop Drawings:

- 1. Include plans, elevations, sections, and attachment details.
- 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 3. Include diagrams for power, signal, and control wiring.
- 4. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, or BIM model, drawn to scale, showing the items described in this Section and coordinated with all building trades.
- B. Product Certificates: Submit certificates that specified equipment will withstand required wind forces, from manufacturer.

Lakeside Union School District

- 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculations.
- 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of wind force and locate and describe mounting and anchorage provisions.
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For HVAC power ventilators to include in normal and emergency operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of unit components.
- C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- E. Capacities and Characteristics:
 - 1. See mechanical schedules.

2.2 CENTRIFUGAL VENTILATORS - ROOF UPBLAST

- A. Configuration: Centrifugal roof upblast, grease hood kitchen ventilator.
- B. Housing: Removable galvanized-steel, mushroom-domed top; square, one-piece aluminum base with venturi inlet cone.
 - Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains.
 - 2. Provide grease collector.
 - Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.
- C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades
- D. EC Motor:
 - 1. Provide with motor mounted speed control dial.

Lakeside Union School District

2. Provide with low voltage communications wiring for remote start/stop.

E. Accessories:

- 1. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
- 2. Spark-resistant, all-aluminum wheel construction.
- 3. Mounting Pedestal: Galvanized steel with removable access panel.
- 4. Restaurant Kitchen Exhaust: UL 762 listed for grease-laden air exhaust.
- F. Prefabricated Kitchen Exhaust Roof Curbs: Galvanized steel; mitered and welded corners; ventilation openings on all sides to ventilate curb interstitial space. Size as required to suit roof opening and fan base.
 - 1. Hinged sub-base to provide access to damper or as cleanout for grease applications.
 - 2. Pitch Mounting: Manufacture curb for roof slope.
 - 3. Metal Liner: Galvanized steel.
 - 4. Vented Curb: For kitchen exhaust; 12-inch- high galvanized steel; unlined, with louvered vents in vertical sides.
 - 5. NFPA 96 code requirements for commercial cooking operations.
 - 6. Kitchen Hood Exhaust: UL 762 listed for grease-laden air.

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.4 SOURCE QUALITY CONTROL

- A. AMCA Certification for Fan Sound Performance Rating: Test, rate, and label in accordance with AMCA 311.
- B. AMCA Certification for Fan Aerodynamic Performance Ratings: Test, rate, and label in accordance with AMCA 211.
- C. AMCA Certification for Fan Energy Index (FEI): Test, rate, and label in accordance with AMCA 211.
- D. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install power ventilators level and plumb.
- B. Equipment Mounting:

Lakeside Union School District

- Secure roof-mounted fans to roof curbs with zinc-plated hardware. See Section 077200
 "Roof Accessories" for installation of roof curbs.
- 2. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- 3. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."
- C. Install units with clearances for service and maintenance.
- D. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 DUCTWORK CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

3.3 ELECTRICAL CONNECTIONS

- A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.
 - 1. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.4 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.5 STARTUP SERVICE:

- A. Perform startup service.
 - 1. Complete installation and startup checks in accordance with manufacturer's written instructions
 - 2. Verify that shipping, blocking, and bracing are removed.
 - 3. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 4. Verify that cleaning and adjusting are complete.
 - 5. For direct-drive fans, verify proper motor rotation direction and verify fan wheel free rotation and smooth bearing operation.
 - 6. Verify lubrication for bearings and other moving parts.

Lakeside Union School District

- 7. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
- 8. Disable automatic temperature-control operators, energize motor and confirm proper motor rotation and unit operation, adjust fan to indicated rpm, and measure and record motor voltage and amperage.
- 9. Shut unit down and reconnect automatic temperature-control operators.
- 10. Remove and replace malfunctioning units and retest as specified above.

3.6 ADJUSTING

- A. Lubricate bearings.
- B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.7 CLEANING

A. After completing system installation and testing, adjusting, and balancing and after completing startup service, clean fans internally to remove foreign material and construction dirt and dust.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Contractor will engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections with the assistance of a factory-authorized service representative.
 - 1. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Test and adjust controls and safeties.
 - 3. Fans and components will be considered defective if they do not pass tests and inspections.
 - 4. Prepare test and inspection reports.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain centrifugal fans.

END OF SECTION

Lakeside Union School District

SECTION 233533

LISTED KITCHEN VENTILATION SYSTEM EXHAUST DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Listed grease ducts.
 - 2. Access doors.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for listed grease ducts.
- B. Shop Drawings: For listed grease ducts.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Detail fabrication and assembly of hangers and seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D9.1/D9.1M, "Sheet Metal Welding Code," for shop and field welding of joints and seams in listed grease ducts and field-fabricated grease ducts.

Lakeside Union School District

PART 2 - PRODUCTS

2.1 LISTED GREASE DUCTS

- A. Description: Factory-fabricated, -listed, and -labeled, double-wall ducts tested according to UL 1978 and rated for 500 deg F continuously, or 2000 deg F for 30 minutes; with positive or negative duct pressure and complying with NFPA 211.
- B. Construction: Inner shell and outer jacket separated by at least a 2-inch annular space filled with high-temperature, ceramic-fiber insulation.
 - 1. Inner Shell: ASTM A666, Type 316 stainless steel.
 - 2. Outer Jacket: Stainless steel where concealed. Stainless steel where exposed.
- C. Gaskets and Flanges: Ensure that gaskets and sealing materials are rated at 1500 deg F minimum.
- D. Hood Connectors: Constructed from same material as grease duct with internal or external continuously welded or brazed joints.
- E. Accessories: Tees, elbows, increasers, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly. Include unique components required to comply with NFPA 96 including cleanouts, transitions, adapters, and drain fittings.
- F. Grease Duct Supports: Construct duct bracing and supports from non-combustible material.
 - Design bracing and supports to carry static and seismic loads within stress limitations of the International Building Code.
 - 2. Ensure that bolts, screws, rivets and other mechanical fasteners do not penetrate duct walls.
- G. Comply with ASTM E2336.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211 and UL 2221, whichever is most stringent.
- B. Seal between sections of grease exhaust ducts according to manufacturer's written installation instructions, using sealants recommended by manufacturer.

Lakeside Union School District

- C. Connections: Make grease duct connections according to the International Mechanical Code.
 - 1. Grease duct to exhaust fan connections: Connect grease ducts to inlet side of fan using flanges, gaskets, and bolts.
 - 2. Grease duct to hood connections:
 - a. Make grease duct to hood joints connections using internal or external continuously welded or brazed joints.
- D. Support ducts at intervals recommended by manufacturer to support weight of ducts and accessories, without applying loading on kitchen hoods.
 - 1. Securely attach supports and bracing to structure.

END OF SECTION

Lakeside Union School District

SECTION 233713.13

AIR DIFFUSERS, REGISTERS, AND GRILLS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Air Diffusers, Registers, and Grills

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 AIR DIFFUSERS, REGISTERS, AND GRILLS

- A. Diffuser, Register, or Grille size, style, material, finish, configuration, patterns, accessories, etc. shall be as indicated on plans and schedules. Sound levels shall be equal or less than indicated in the schedules.
- B. Mounting: Surface (ceiling or wall), T-bar, or duct mounting. See drawings for mounting.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install diffusers level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.2 ADJUSTING

A. After installation, adjust diffusers to air patterns indicated, or as directed, before starting air balancing.

Lakeside Union School District

END OF SECTION

Lakeside Union School District

SECTION 233723 - HVAC GRAVITY VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - Hooded ventilators.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product
- B. Shop Drawings: For gravity ventilators.
 - 1. Include plans, elevations, sections, details, ventilator attachments to curbs, and curb attachments to roof structure.
 - 2. Show weep paths, gaskets, flashing, sealant, and other means of preventing water intrusion.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Roof-framing plans and other details, drawn to scale, and coordinated with each other, based on input from installers of the items involved:

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.2/D1.2M, "Structural Welding Code Aluminum."
 - 2. AWS D1.3/D1.3M, "Structural Welding Code Sheet Steel."

1.6 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

Lakeside Union School District

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Ventilators shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of ventilator components, noise or metal fatigue caused by ventilator blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.
 - 1. Component Importance Factor: 1.0.
- B. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1.
- C. ASHRAE 62.1 Compliance: Section 5, "Systems and Equipment" and Section 7, "Construction and System Start-up."
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes, without buckling, opening of joints, overstressing of components, failure of connections, or other detrimental effects.
 - 1. Temperature Change (Range):
 - a. Ambient: 120 deg F.
 - b. Material Surfaces: 180 deg F.
- E. Water Entrainment: Limit water penetration through unit to comply with ASHRAE 62.1.
- F. Capacities and Characteristics: Refer to plans.

2.2 FABRICATION

- A. Factory or shop fabricate gravity ventilators to minimize field splicing and assembly. Disassemble units to the minimum extent as necessary for shipping and handling. Clearly mark units for reassembly and coordinated installation.
- B. Fabricate frames, including integral bases, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.
- C. Fabricate units with closely fitted joints and exposed connections accurately located and secured.
- D. Fabricate supports, anchorages, and accessories required for complete assembly.
- E. Perform shop welding by AWS-certified procedures and personnel.

2.3 HOODED VENTILATORS

- A. Description: Hooded **round** penthouse for **intake** air.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

Lakeside Union School District

- 1. Greenheck Fan Corporation.
- 2. Cook
- 3. Aerovent; a division of Twin City Fan Companies, Ltd.
- 4. Or Equal.
- C. Source Limitations: Obtain hooded ventilators from single manufacturer.

D. Construction:

- Material, Aluminum: Thickness required to comply with structural performance requirements, but not less than 0.063-inch- thick base and 0.050-inch- thick hood; suitably reinforced.
- 2. Insulation: Mineral-fiber insulation and vapor barrier.
- 3. Bird Screening: Aluminum, 1/2-inch- square mesh or flattened, expanded aluminum, 3/4-inch diamond mesh wire.
- 4. Insect Screening: Aluminum, 18-by-16 mesh wire .

E. Galvanized-Steel Finish:

- Surface Preparation: Clean surfaces of dirt, grease, and other contaminants. Clean welds, mechanical connections, and abraded areas, and repair galvanizing according to ASTM A780/A780M. Apply a conversion coating suited to the organic coating to be applied over it.
- 2. Baked-Enamel Finish: Immediately after cleaning and pretreating, apply manufacturer's standard finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil for topcoat and an overall minimum dry film thickness of 2 mils.
 - a. Color and Gloss: As selected by Architect from manufacturer's full range.

F. Dampers:

- 1. Location: Curb damper tray.
- 2. Control: **Gravity backdraft**.
- 3. Tray: Provide damper tray or shelf with opening 3 inches less than interior curb dimensions indicated of size indicated.
- G. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch-thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to fit roof opening and ventilator base.

2.4 GOOSENECKS

- A. Factory or shop fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 6-5; with a minimum of 0.052-inch- thick, galvanized-steel sheet.
- B. Bird Screening: Aluminum, 1/2-inch- square mesh, 0.063-inch wire.
- C. Insect Screening: Aluminum, 18-by-16 mesh, 0.012-inch.
- D. Galvanized-Steel Sheet Finish:
 - 1. Surface Preparation: Clean surfaces of dirt, grease, and other contaminants. Clean welds, mechanical connections, and abraded areas, and repair galvanizing according to ASTM A780/A780M. Apply a conversion coating suited to the organic coating to be applied over it.

Lakeside Union School District

- 2. Baked-Enamel Finish: Immediately after cleaning and pretreating, apply manufacturer's standard finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil for topcoat and an overall minimum dry film thickness of 2 mils.
 - Color and Gloss: As selected by Architect from manufacturer's full range.
- E. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch- thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to fit roof opening and ventilator base.

2.5 SOURCE QUALITY CONTROL

A. AMCA Certification for Hooded Ventilators: Test, rate, and label gravity ventilators in accordance with AMCA 511.

2.6 MATERIALS

- A. Aluminum Extrusions: ASTM B221, Alloy 6063-T5 or T-52.
- B. Aluminum Sheet: ASTM B209, Alloy 3003 or 5005, with temper as required for forming or as otherwise recommended by metal producer for required finish.
- C. Galvanized-Steel Sheet: ASTM A653/A653M, G90 zinc coating, mill phosphatized.
- D. Stainless Steel Sheet: ASTM A666, Type 304, with No. 4 finish.
- E. Fasteners: Same basic metal and alloy as fastened metal or 300 Series stainless steel unless otherwise indicated. Do not use metals that are incompatible with joined materials.
 - 1. Use types and sizes to suit unit installation conditions.
 - Use hex-head or Phillips pan-head screws for exposed fasteners unless otherwise indicated.
- F. Post-Installed Fasteners for Concrete and Masonry: Torque-controlled expansion anchors made from stainless-steel components, with capability to sustain without failure a load equal to 4 times the loads imposed for concrete, or 6 times the load imposed for masonry, as determined by testing according to ASTM E488/E488M, conducted by a qualified independent testing agency.
- G. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D1187.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install gravity ventilators level, plumb, and at indicated alignment with adjacent work.
- B. Secure gravity ventilators to roof curbs with zinc-plated hardware, **that comply with the wind and seismic fastening requirements**. Use concealed anchorages where possible. Refer to Section 077200 "Roof Accessories."
- C. Install goosenecks on curb base where throat size exceeds 9 by 9 inches.

Lakeside Union School District

- D. Install gravity ventilators with clearances for service and maintenance.
- E. Install perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
- F. Install concealed gaskets, flashings, joint fillers, and insulation as installation progresses. Comply with Section 079200 "Joint Sealants" for sealants applied during installation.
- G. Label gravity ventilators according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."
- H. Protect galvanized and nonferrous-metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry, or dissimilar metals.
- I. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes, so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.
- J. Refer to Section 077200 "Roof Accessories" for flashing and counterflashing of roof curbs.

3.2 DUCT CONNECTIONS

A. Duct installation and connection requirements are specified in Section 233113 "Metal Ducts". Drawings indicate general arrangement of ducts and duct accessories.

3.3 ADJUSTING

A. Adjust damper linkages for proper damper operation.

END OF SECTION

Lakeside Union School District

SECTION 235513.16

GAS-FIRED DUCT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes gas-fired duct heaters.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of gas-fired duct heater.
 - 1. Include rated capacities, operating characteristics, and accessories.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, elevations, and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Structural members to which equipment will be attached.
 - 2. Items penetrating roof and the following:
 - a. Duct, vent, and gas piping rough-ins and connections.
- B. Field quality-control reports.
- C. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For gas-fired duct heaters to include in emergency, operation, and maintenance manuals.

1.6 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace heat exchanger of gas-fired duct heater that fails in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.

Lakeside Union School District

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Gas-fired duct heaters shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - Seismic Fabrication Requirements: Fabricate and reinforce suspension attachments of gas-fired duct heaters, accessories mountings, and components with reinforcement strong enough to withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC" when gas-fired duct heater is anchored to building structure.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Capacities and Characteristics:
 - 1. Heat Exchanger: Aluminized steel.
 - 2. Burner Material: Aluminized steel with stainless-steel inserts.
 - 3. Venting: Gravity vented.
 - 4. Flue Outlet: per manufacture
 - 5. Gas Input: 300,000 Btu/h.
 - 6. Gas Output: 240,000 Btu/h.
 - 7. Gas Control Valve: Two stage.
 - 8. Annual Fuel Utilization Efficiency:80 percent.

2.2 MANUFACTURED UNITS

- A. Description: Factory assembled, piped, and wired; and complying with ANSI Z83.8/CSA 2.6.
- B. Fuel Type: Design burner for [natural] [propane] gas having characteristics same as those of gas available at Project site.
- C. Indoor External Housing: Steel cabinet with integral support inserts and removable bottom arranged to serve as drain pan.
 - 1. External Casings and Cabinets: Baked enamel over corrosion-resistant-treated surface.
 - 2. External Casings and Cabinets: Baked enamel over corrosion-resistant-treated surface.
- D. Internal Casing: Aluminized steel, arranged to contain airflow, with duct flanges at inlet and outlet.
- E. Controls: Regulated redundant gas valve containing pilot solenoid valve, electric gas valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.
 - 1. Ignition: Electronically controlled electric spark with flame sensor.
 - 2. Fan Thermal Switch: Operates fan on heat-exchanger temperature.
 - 3. Vent Flow Verification: Flame rollout switch.
 - Control transformer.
 - 5. High Limit: Thermal switch or fuse to stop burner.

Lakeside Union School District

6. Thermostat: Two-stage type with duct-mounted sensor and 50 to 90 deg F operating range.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install and connect gas-fired duct heaters and associated fuel and vent features and systems according to NFPA 54, applicable local codes and regulations, and manufacturer's written instructions.
- B. Suspended Units: Suspend from substrate using threaded rods, spring hangers, and building attachments. Secure rods to unit hanger attachments. Adjust hangers so unit is level and plumb.
 - 1. Comply with requirements in Section 230548.13 "Vibration and Seismic Controls for HVAC" for spring hangers and seismic restraints.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to gas-fired duct heaters, allow space for service and maintenance.
- C. Gas Piping: Comply with Section 231123 "Facility Natural-Gas Piping." Connect gas piping to gas train inlet; provide union with enough clearance for burner removal and service.
- D. Duct Connections: Comply with Section 233113 "Metal Ducts."
- E. Electrical Connections: Comply with applicable requirements in electrical Sections.
 - 1. Install electrical devices furnished with heaters but not specified to be factory mounted.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 2. Verify bearing lubrication.
 - Verify proper motor rotation.
 - 4. Test Reports: Prepare a written report to record the following:
 - a. Test procedures used.
 - b. Test results that comply with requirements.

Lakeside Union School District

- c. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- C. Gas-fired duct heater will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust initial temperature and humidity set points.
- B. Adjust burner and other unit components for optimum heating performance and efficiency.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain gas-fired duct heaters.

END OF SECTION

Lakeside Union School District

SECTION 238126 - SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Warranty

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data. For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance:
 - 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."

Lakeside Union School District

- 2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 "Outdoor Air Quality," Section 5 "Systems and Equipment," Section 6 " Procedures," and Section 7 "Construction and System Start-up."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. For Compressor: **Five** year(s) from date of Substantial Completion.
 - b. For Parts: **Five** year(s) from date of Substantial Completion.
 - c. For Labor: **Five** year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Carrier
- B. LG Electronics
- C. Daikin
- D. Trane
- E. Or Equivalent

2.2 INDOOR UNITS (5 TONS OR LESS)

- A. Concealed Evaporator-Fan Components:
 - 1. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
 - 2. Insulation: Faced, glass-fiber duct liner.
 - 3. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 206/110.
 - 4. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
 - 5. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - c. Wiring Terminations: Connect motor to chassis wiring with plug connection.

Lakeside Union School District

- 6. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- 7. Filters: See Equipment Schedule for filter requirements.
- 8. Condensate Drain Pans:
 - a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 - 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 - 2) Depth: A minimum of **2 inches** deep.
 - b. Single-wall, **galvanized**-steel sheet.
 - c. Double-wall, **galvanized**-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
 - d. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on **both ends** of pan.
 - 1) Minimum Connection Size: NPS 3/4".
 - e. Pan-Top Surface Coating: Asphaltic waterproofing compound.
 - f. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

2.3 OUTDOOR UNITS (5 TONS OR LESS)

- A. Air-Cooled, Compressor-Condenser Components:
 - 1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 - 2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - a. Compressor Type: Scroll.
 - b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 - c. Refrigerant Charge: **R-410A**.
 - d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 206/110.
 - 3. Heat-Pump Components: Reversing valve and low-temperature-air cutoff thermostat.
 - 4. Fan: Aluminum-propeller type, directly connected to motor.
 - 5. Motor: Permanently lubricated, with integral thermal-overload protection.
 - 6. Low Ambient Kit: Permits operation down to 45 deg F.

Lakeside Union School District

7. Mounting Base: Polyethylene.

2.4 ACCESSORIES

- A. Thermostat: Low voltage with subbase to control compressor and evaporator fan.
- B. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
 - 1. Compressor time delay.
 - 2. 24-hour time control of system stop and start.
 - 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 - 4. Fan-speed selection including auto setting.
- C. Automatic-reset timer to prevent rapid cycling of compressor.
- D. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.
- E. Drain Hose: For condensate.
- F. Additional Monitoring:
 - 1. Monitor constant and variable motor loads.
 - 2. Monitor variable-frequency-drive operation.
 - 3. Monitor economizer cycle.
 - 4. Monitor cooling load.
 - 5. Monitor air distribution static pressure and ventilation air volumes.

2.5 CAPACITIES AND CHARACTERISTICS

A. Refer to mechanical plans and schedules for capacities and characteristics.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Install roof-mounted, compressor-condenser components on equipment supports specified in Section 077200 "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.

Lakeside Union School District

D. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

A. **Engage a factory-authorized service representative to train** Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 238126

Lakeside Union School District

SECTION 260100

ELECTRICAL GENERAL PROVISIONS

PART 1 GENERAL

SUMMARY

- 1.1 This Division of the specification outlines the provisions of the contract work to be performed under this Division.
- 1.2 This Section applies to and forms a part of each section of specifications in Division 26 and all work performed under Division 26, 27 and 28.
- 1.3 In addition, work in this Division is governed by the provisions of the bidding requirements, contract forms, general conditions and all sections under general requirements.
- 1.4 These specifications contain statements which may be more definitive or more restrictive than those contained in the General Conditions. Where these statements occur, they shall take precedence over the General Conditions.
- 1.5 Where the words 'provide' or 'provision' are used, it shall be definitely interpreted as 'furnishing and installing complete in operating condition'. Where the words 'as indicated' or 'as shown' are used, it shall mean as shown on contract drawings.
- 1.6 Where items are specified in the singular, this Division shall provide the quantity as shown on drawings plus any spares or extras mentioned on drawings or specifications. All specified and supplied equipment shall be new.

CONTRACTOR QUALIFICATIONS

1.7 The Contractor shall have a current California C-10 Electrical Contractor's license and all individuals working on this project shall have passed the Department of Industrial Relations Division of apprenticeship Standards – "Electrician Certification Program."

CODES, PERMITS AND FEES

- 1.8 Comply with all applicable laws, ordinances, rules, regulations, codes, or rulings of governmental units having jurisdiction as well as standards of CEC and serving utility requirements.
- 1.9 Obtain permits, fees, inspections, meter and the like, associated with work in each section of this Division.
- 1.10 Installation procedures, methods and conditions shall comply with the latest requirements of the Federal Occupational Safety and Health Act (OSHA).

EXAMINATION OF PREMISES

1.11 Examine the construction drawings and premises prior to bidding. No allowances will be made for not being knowledgeable of existing conditions.

Lakeside Union School District

STANDARDS

- 1.12 The following standard publications of the latest editions enforced, and supplements thereto shall form a part of these specifications. All electrical work must, as a minimum, be in accordance with these standards.
 - 1.12.1 2022 California Electrical Code (CEC), Part 3 Title 24 CCR.
 - 1.12.2 National Fire Protection Association.
 - 1.12.3 Underwriters' Laboratories, Inc. (UL).
 - 1.12.4 Certified Ballast Manufacturers' Association (CBM).
 - 1.12.5 National Electrical Manufacturers' Association (NEMA).
 - 1.12.6 Institution of Electrical & Electronics Engineers (IEEE).
 - 1.12.7 American Society for Testing & Materials (ASTM).
 - 1.12.8 National Board of Fire Underwriters (NBFU).
 - 1.12.9 National Board of Standards (NBS).
 - 1.12.10 American National Standards Institute (ANSI).
 - 1.12.11 Insulated Power Cable Engineers Association (IPECS).
 - 1.12.12 Electrical Testing Laboratories (ETL).
 - 1.12.13 National Electrical Safety Code (NESC).
 - 1.12.14 2022 California Building Code (CBC), Part 2, Title 24 CCR.
 - 1.12.15 2022 California Fire Code (CFC), Part 9, Title 24, CCR.
 - 1.12.16 2022 NFPA 72 with California State Amendments
 - 1.12.17 National Electrical Testing Association (NETA), 2010 or most current

DEFINITIONS

- 1.13 Concealed: Hidden from sight, as in trenches, chases, hollow construction, or above furred spaces, hung ceilings acoustical or plastic type, or exposed to view only in tunnels, attics, shafts, crawl spaces, unfinished spaces, or other areas solely for maintenance and repair.
- 1.14 Exposed, Non-Concealed, Unfinished Space: A room or space that is ordinarily accessible only to building maintenance personnel, a room noted on the 'finish schedule' with exposed and unpainted construction for walls, floors, or ceilings or specifically mentioned as 'unfinished'.
- 1.15 Finish Space: Any space ordinarily visible, including exterior areas.

WORK AND MATERIALS

- 1.16 Unless otherwise specified, all materials must be new and of the best quality. Materials previously incorporated into other projects, salvaged, or refurbished are not considered new. Perform all labor in a thorough and workmanlike manner.
- 1.17 All materials provided under the contract must bear the UL label where normally available. Note that this requirement may be repeated under equipment specifications. In general, such devices as will void the label should be provided in separate enclosures and wired to the labeled unit in proper manner.

SHOP DRAWINGS AND SUBMITTALS

- 1.18 Submit shop drawings and all data in accordance with Division 1 of these specifications and as noted below for all equipment provided under this Division.
- 1.19 Shop drawings submittal demonstrate to the Architect that the Contractor understands the design concept. The Contractor demonstrates their understanding by indicating which equipment and material they inten to furnish and install and by detailing the

Lakeside Union School District

fabrication and installation methods of material and equipment he intends to use. If deviations, discrepancies, or conflicts etween submittals and specifications are discovered either prior to or after submittals are processed, notify the Architect immediately.

- 1.20 Manufacturer's data and dimension sheets shall be submitted giving all pertinent physical and engineering data including weights, cross sections and maintenance instructions. Standard items of equipment such as receptacles, switches, plates, etc., which are cataloged items, shall be listed by manufacturer.
- 1.21 Index all submittals and reference them to these specifications. All submittal items shall be assembled and submitted, one for each specification section. (Multiple specification sections may be grouped together in one common submittal binder, as long as each individual section is clearly identified.) Partial or incomplete submittal sections will not be reviewed.

EQUIPMENT PURCHASES

- 1.22 Arrange for purchase and delivery of all materials and equipment within 20 days after approval of submittals. All materials and equipment must be ordered in ample quantities for delivery at the proper time. If items are not on the project in time to expedite completion, the Owner may purchase said equipment and materials and deduct the cost from the contract sum.
- 1.23 Provide all materials of similar class or service by one manufacturer.

COOPERATIVE WORK

- 1.24 Correct without charge any work requiring alteration due to lack of proper supervision or failure to make proper provision in time. Correct without charge any damage to adjacent work caused by the alteration.
- 1.25 Cooperative work includes: General supervision and responsibility for proper location and size of work related to this Division, but provided under the other sections of these specifications, and installation of sleeves, inserts, and anchor bolts for work under each section in this Division.

VERIFICATION OF DIMENSIONS

- 1.26 Scaled and figured dimensions are approximate only. Before proceeding with work, carefully check and verify dimensions, etc., and be responsible for properly fitting equipment and materials together and to the structure in spaces provided.
- 1.27 Drawings are essentially diagrammatic, and many offsets, bends, pull boxes, special fittings, and exact locations are not indicated. Carefully study drawings and premises in order to determine best methods, exact location, routes, building obstructions, etc. and install apparatus and equipment in manner and locations to avoid obstructions, preserve headroom, keep openings and passageways clear, and maintain proper clearances.

CLOSING-IN OF UNINSPECTED WORK

1.28 Cover no work until inspected, tested, and approved by the Architect. Where work is covered before inspection and test, uncover it and when inspected, tested, and approved, restore all work to original proper condition at no additional cost to Owner.

Lakeside Union School District

CONCRETE

- 1.29 Where used for structures to be provided under the contract such as bases, etc., concrete work, and associated reinforcing shall be as specified under Division 3 of these specifications.
- 1.30 See other sections for additional requirements for underground vaults, cable ducts, etc.

ACCESSIBILITY

- 1.31 Install all control devices or other specialties requiring reading, adjustment, inspection, repairs, removal, or replacement conveniently and accessibly throughout the finished building.
- 1.32 All required access doors or panels in walls and ceilings are to be furnished and installed as part of the work under this Section. Refer to Division 1 of these specifications and as noted below.
- 1.33 Where located in fire rated assemblies, provide doors which match the rating of the assembly and are approved by the jurisdictional authority.
- 1.34 Refer to 'finish schedule' for types of walls and ceilings in each area and the architectural drawings for rated wall construction.
- 1.35 Coordinate work of the various sections to locate specialties requiring accessibility with others to avoid unnecessary duplication of access doors.

FLASHING

1.36 Flash and counter flash all conduits penetrating roofing membrane as shown on Architectural drawings. All work shall be in accordance with Division 7 of these specifications.

IDENTIFICATION OF EQUIPMENT

1.37 All electrical equipment shall be labeled, tagged, stamped, or otherwise identified in accordance with the following schedules:

1.37.1 General:

- 1.37.1.1 In general, the installed laminated nameplates as hereinafter called for shall also clearly indicate its use, areas served, circuit identification, voltage and any other useful data.
- 1.37.1.2 All auxiliary systems, including communications, shall be labeled to indicate function.

1.37.2 Lighting and Local Panelboards:

- 1.37.2.1 Panel identification shall be with white and black micarta nameplates. Letters shall be no less than 3/8" high.
- 1.37.2.2 Circuit directory shall be two column typewritten card set under glass or glass equivalent. Each circuit shall be identified by the room number and/or number of unit and other pertinent data as required.

Lakeside Union School District

- 1.37.3 Distribution Switchboards and Feeders Sections:
 - 1.37.3.1 Identification shall be with 1" x 4" laminated white micarta nameplates with black lettering on each major component, each with name and/or number of unit and other pertinent data as required. Letters shall be no less than 3/8" high.
 - 1.37.3.2 Circuit breakers and switches shall be identified by number and name with 3/8" x 1-1/2" laminated micarta nameplates with 3/16" high letters mounted adjacent to or on circuit breaker or switch.
- 1.37.4 Disconnect Switches, Motor Starters and Transformers:
 - 1.37.4.1 Identification shall be with white micarta laminated labels and 3/8" high black lettering.
- 1.37.5 All communication system terminal boxes including T.V., telephone/intercom, security, fire alarm, clock, and computer networking shall be provided with white micarta laminated labels and 3/8" high black lettering.

CONSTRUCTION FACILITIES

- 1.38 Furnish and maintain from the beginning to the completion all lawful and necessary guards, railings, fences, canopies, lights, warning signs, etc. Take all necessary precautions required by City, State Laws, and OSHA to avoid injury or damage to any persons and property.
- 1.39 Temporary power and lighting for construction purposes shall be provided under this Section. All work shall be in accordance with Division 1 of these specifications.

GUARANTEE

1.40 Guarantee all material, equipment and workmanship for all sections under this Division in writing to be free from defect of material and workmanship for one year from date of final acceptance, as outlined in the general conditions. Replace without charge any material or equipment proven defective during this period. The guarantee shall include performance of equipment under all site conditions, conditions of load, installing any additional items of control and/or protective devices, as required.

PATENTS

1.41 Refer to the General Conditions for Contractor's responsibilities regarding patents.

PLUMBING (DIVISION 22) / HEATING, VENTILATING, AND AIR CONDTIONING (DIVISION 23) / ELECTRICAL – COORDINATION REQUIREMENTS

All electrical work performed for this project shall conform to the California Electrical Code, to Local Building Codes and in conformance with Division 22, 23, and 26 of these specifications, whether the work is provided under the "Plumbing", "Heating, Ventilating, and Air Conditioning", or the "Electrical" Division of these specifications. Where the Division 22 and/or Division 23 Contractor is required to provide electrical work, he shall arrange for the work to be done by a licensed Division 26 Contractor, using qualified electricians. The Division 22 and/or Division 23 Contractor shall be solely and completely responsible for the correct functioning of all equipment regardless of who provided the electrical work.

Lakeside Union School District

- 1.43 The work under Division 22 and/or Division 23 shall include the following:
 - 1.43.1 All motors required by mechanical equipment.
 - 1.43.2 All starters for mechanical equipment which are not provided under the electrical division as part of a motor control center or otherwise indicated on the electrical drawings.
 - 1.43.3 All wiring interior to packaged equipment furnished as an integral part of the equipment.
 - 1.43.4 All control wiring and conduit for mechanical control systems.
 - 1.43.5 All control systems required by mechanical equipment.
- 1.44 The work under Division 26 shall include the following:
 - 1.44.1 All power wiring and conduit; and conduit only for EMS control conductors between each building and the main control panel.
 - 1.44.2 Electrical disconnects as shown on the electrical drawings.
 - 1.44.3 Starters forming part of a motor control center.
- 1.45 All power wiring and conduit to equipment furnished under Division 22 and/or Division 23 shall be provided under Division 26. Control wiring and conduit, whether line voltage or low voltage, shall be provided under the division which furnishes the equipment.
- 1.46 Power wiring shall be defined as all wiring between the panelboard switchboard overcurrent device, motor control center starter or switch, and the safety disconnect switch or control panel serving the equipment. Also, the power wiring between safety disconnect switch and the equipment line terminals.
- 1.47 Control wiring shall be defined as all wiring, either line voltage or low voltage, required for the control and interlocking of equipment, including but not limited to wiring to motor control stations, solenoid valves, pressure switches, limit switches, flow switches, thermostats, humidistats, safety devices, smoke detectors, and other components required for the proper operation of the equipment.
- 1.48 All motor starters which are not part of motor control centers and which are required for equipment furnished under this Division shall be furnished and installed by the Division furnishing the equipment and power wiring connected under Division 26. Motor starters and control devices in motor control centers shall be furnished and installed under Division 26.
- 1.49 Division 26 Contractor shall make all final connections of power wiring to equipment furnished under this Division.
- 1.50 Wiring diagrams complete with all connection details shall be furnished under each respective Section.
- 1.51 Motor starters supplied by Plumbing and/or Heating, Ventilating and Air Conditioning shall be fused combination type minimum NEMA Size 1, and conform to appropriate NEMA standards for the service required. Provide NEMA type 3R/12 gasketed enclosures in wet locations. Provide all starters with appropriately sized overload

Lakeside Union School District

protection and heater strips provided in each phase, hand/off auto switches, a minimum of 2 NO and NC auxiliary contacts as required, and an integral disconnecting means. For ½ horsepower motors and below, when control requirements do not dictate the use of a starter, a manual motor starter switch with overload protection in each phase may be provided. Acceptable manufacturers are Allen Bradley, General Electric, Square D, Furnas and Cutler Hammer.

EQUIPMENT ROUGH-IN

1.52 Rough-in all equipment, fixtures, etc. as designed on the drawings and as specified herein. The drawings indicate only the approximate location of rough-ins. Mounting heights of all switches, receptacles, wall mounted fixtures and such equipment must be coordinated with the Architectural Designs. The Contractor shall obtain all rough-in information before progressing with any work for rough-in connections. Minor changes in the contract drawings shall be anticipated and provided for under this Division of the specifications to comply with rough-in requirements.

OWNER FURNISHED AND OTHER EQUIPMENT

1.53 Rough-in and make final connections to all Owner furnished equipment shown on the drawings and specified, and all equipment furnished under other sections of the specifications.

EQUIPMENT FINAL CONNECTIONS

- 1.54 Provide all final connections for the following:
 - 1.54.1 All equipment furnished under this Division.
 - 1.54.2 Electrical equipment furnished under other sections of the specification.
 - 1.54.3 Owner furnished equipment as specified under this Division.

INSERTS, ANCHORS, AND MOUNTING SLEEVES

- 1.55 Inserts and anchors must be:
 - 1.55.1 Furnished and installed for support of work under this Division.
 - 1.55.2 Mounting of equipment that is of such size as to be free standing and that equipment which cannot conveniently be located on walls, such as motor starters, etc., shall be rigidly supported on a framework of galvanized steel angle of Unistrut or B-line systems with all unfinished edges painted.
 - 1.55.3 Furnish and install all sleeves as required for the installation of all work under all Sections of this Division and for all communication systems including any communication systems described in this Section which are bid to the General Contractor. Sleeves through floors, roof, and walls shall be as described in "Conduit and Fittings" Section 26 05 33.

SEISMIC ANCHORING

1.56 All switchgear and other free-standing electrical equipment or enclosures shall be anchored to the floor and braced at the top of the equipment to the structure. The Contractor shall submit drawings signed by the Contractors registered structural Engineer indicating method of compliance prior installation.

Lakeside Union School District

1.57 All sound systems, communication, signal or data networking equipment or enclosures shall be anchored to the structure. The Contractor shall submit drawings signed by the Contractors registered Structural Engineer indicating method of compliance prior to installation.

RUST PROOFING

- 1.58 Rust proofing must be applied to all ferrous metals and shall be in accordance with Section 05500 of these specifications and as noted below.
 - 1.58.1 Hot-dipped galvanized shall be applied and after forming of angle-iron, bolts, anchors, etc.
 - 1.58.2 Hot-dipped galvanized coating shall be applied after fabrication for junction boxes and pull boxes cast in concrete.

GENERAL WIRING

- 1.59 Where located adjacent in walls, outlet boxes shall not be placed back to back, nor shall extension rings be used in place of double boxes, all to limit sound transmission between rooms. Provide short horizontal nipple between adjacent outlet boxes, which shall have depth sufficient to maintain wall coverage in rear by masonry wall.
- 1.60 In those instances where outlet boxes, recessed terminal boxes, or recessed equipment enclosures are installed in a fire rated assembly, provide "Flamesafe FSD 1077" fire stopping pads or approved equal, over the outlet or box.
- 1.61 Complete rough-in requirements of all equipment to be wired under the contract are not indicated. Coordinate with respective trades furnishing equipment or with the Architect as the case may be for complete and accurate requirements to result in a neat, workmanlike installation.

SEPARATE CONDUIT SYSTEMS

- 1.62 Each electrical and signal system shall be contained in a separate conduit system as shown on the drawings and as specified herein. This includes each power system, each lighting system, each signal system of whatever nature, telephone, standby system, sound system, control system, fire alarm system, etc.
- 1.63 Further, each item of building equipment must have its own run of power wiring. Control wiring may be included in properly sized conduit for equipment feeders of #6 AWG and smaller, having separate conduit for larger sizes.

CLEANUP

- 1.64 In addition to cleanup specified under other sections, thoroughly clean all parts of the equipment. Where exposed parts are to be painted, thoroughly clean off any spattered construction materials and remove all oil and grease spots. Wipe the surface carefully and scrape out all cracks and corners.
- 1.65 Use steel brushes on exposed metal work to carefully remove rust, etc., and leave smooth and clean.
- 1.66 During the progress of the work, keep the premises clean and free of debris.

Lakeside Union School District

PAINTING

- 1.67 Paint all unfinished metal as required in accordance with Division 1 of these specifications. (Galvanized and factory painted equipment shall be considered as having a sub-base finish.)
- 1.68 Paint all exposed conduit locations in finished spaces to match the finish on the surfaces they are attached to. Verify all color selections with the Architect prior to painting.

GENERAL DEMOLITION REQUIREMENTS

- 1.69 Remove existing work and items which are required to be removed in such manner that minimum damage and disturbance is caused to adjacent and connection work scheduled to remain. Repair or replace existing work schedule.
- 1.70 Include preparation of existing areas to receive new materials and removal of materials and equipment to alter or repair the existing building as indicated and as specified.
- 1.71 Perform demolition exercising proper care to prevent injury to the public, workmen and adjoining property.
- 1.72 Perform the removal, cutting, drilling of existing work with extreme care and use small tools in order not to jeopardize the structural integrity of the building.
- 1.73 Rebuild to existing condition or better, existing work which has to be removed to allow the installation of new work as required.
- 1.74 Remove, protect and reinstall existing items as indicated. Replace materials scheduled for reuse which are damaged by the Contractor to the extent that they cannot be reused, with equal quality material, and installation.
- 1.75 Do not reuse in this project materials and items removed from existing site or building, except with specific written approval by the Architect in each case, unless such removed material or item is specifically indicated or specified to be reused.
- 1.76 Remove materials and equipment indicated to be salvaged for reinstallation and store to prevent damage and reinstall as the work progresses. Do not reuse in this project, other materials and equipment removed from existing site or building, except with specific written approval by the Architect in each case.
- 1.77 Patch areas requiring patching, including damage caused by removing, relocating or adding fixtures and equipment, damages caused by demolition at adjacent materials.
- 1.78 Do not stockpile debris in the existing building, without the approval of the Architect. Remove debris as it accumulates from removal operations to a legal disposal area.
- 1.79 Contractor to assume existing oil filled and dry transformers, oil switches, ballasts, lamps, wooden poles, cross arms, computers, computer monitors, and conductor insulation containing materials considered hazardous. Comply with local, state and federal regulations, laws, and ordinances concerning removal, handling and protection against exposure or environmental pollution. Contractor shall be responsible for removal of the above hazardous materials where encountered. Include all costs for such removal as part of this contract.
- 1.80 All fluorescent, compact fluorescent, high intensity discharge, metal halide, mercury vapor, high and low-pressure sodium, and neon lamps are to be disposed of as required by

Lakeside Union School District

the California Waste Rule Regulations as described in the California Code of Regulations, Title 22. Division 4.5 and Chapter 23.

- 1.81 Communication System: Where new communication systems, (including telephone, intercom, clock, security, fire alarm, data, multimedia, CATV or lighting controls) are installed to replace existing systems, unless where otherwise directed the existing systems shall remain fully operational until the new system has been installed and tested. Demolition of the existing systems shall include removal of all equipment and associated wiring and exposed conduits and providing new blank covers for all abandoned device locations.
- 1.82 **Salvage Power Equipment:** The Contractor shall carefully remove all existing switchboards, panelboards, transformers, and confirm in writing which items the Owner wishes to keep. These items shall be transported to the Owner's maintenance facilities by the Contractor. All remaining items shall be disposed of by the Contractor.
- 1.83 **Salvage Lighting Equipment:** The Contractor shall confirm in writing which items the Owner wishes to keep. These items shall be transported to the Owner's maintenance facilities by the Contractor. All remaining items shall be disposed of by the Contractor.
- 1.84 **Salvage Communication Equipment:** The Contractor shall carefully remove all communication devices (telephone, intercom, clock, security, fire alarm, data, multimedia, CATV or lighting controls) and box each type of devices separately. The Contractor shall deliver all items to the Owner's maintenance facility.

PROJECT CLOSEOUT

- 1.85 Prior to completion of project, compile a complete equipment maintenance manual for all equipment supplied under sections of this Division, in accordance with Division 1 of these specifications and as described below.
- 1.86 Equipment Lists and Maintenance Manuals:
 - 1.86.1 Prior to completion of job, Contractor shall compile a complete equipment list and maintenance manuals. The equipment list shall include the following items for every piece of material equipment supplied under this Section of the specifications:
 - 1.86.1.1 Name, model, and manufacturer.
 - 1.86.1.2 Complete parts drawings and lists.
 - 1.86.1.3 Local supply for parts and replacement and telephone number.
 - 1.86.1.4 All tags, inspection slips, instruction packages, etc., removed from equipment as shipped from the factory, properly identified as to the piece of equipment it was taken from.
- 1.87 Maintenance manuals shall be furnished for each applicable section of the specifications and shall be suitably bound with hard covers and shall include all available manufacturers' operating and maintenance instructions, together with "as-built" drawings to properly operate and maintain the equipment. The equipment lists and maintenance manuals shall be submitted in duplicate to the Architect for approval not less than 10 days prior to the completion of the job. The maintenance manuals shall also include the name, address, and phone numbers of all subcontractors involved in any of the work

Lakeside Union School District

specified herein. Four copies of the maintenance manuals bound in single volumes shall be provided.

RECORD DRAWINGS

- 1.88 The Division 26 Contractor shall maintain record drawings as specified in accordance with Division 1 of these specifications, and as noted below.
- 1.89 Drawings shall show locations of all concealed underground conduit runs, giving the number and size of conduit and wires. Underground ducts shall be shown with cross section elevations and shall be dimensioned in relation to permanent structures to indicate their exact location. Drawing changes shall not be identified only with referencing CORs and RFIs, the drawings shall reflect all of the actual additions or changes made. All asbuilt drawing information shall be prepared by the contractor in AutoCAD, updating the contract computer files as needed to reflect actual installed conditions for all site plans, lighting, power, communication, networking, audio visual, security or fire alarms systems included in the scope of work for this project.
- 1.90 One set of these record drawings shall be delivered to the Architect. The engineer will review documents for completeness and will not be responsible for editing contractor computer files.

CHANGES AND EXTRA WORK

- 1.91 When **changes** in work are requested, the Division 26 Contractor shall provide unit prices for the work involved in accordance with Division 1 of these specifications, and the following:
 - 1.91.1 The material Costs shall **not exceed** the invoice pricing from an Electrical Distributor indicating the pricing provided at the time of bid. The Contractor shall submit a print out copy of the pricing with the change order to substantiate these values.
 - 1.91.2 The labor Costs shall <u>not exceed</u> the latest edition of the "NECA Manual of Labor Units" <u>normal column</u>.
- 1.92 When **credits** in work are requested, the Division 26 Contractor shall provide unit prices for the work involved in accordance with Division 1 of these specifications, and the following:
 - 1.92.1 The Material Costs shall <u>not be less than 80% of</u> the invoice pricing from an Electrical Distributor indicating the pricing provided at the time of bid. Restocking fees may also be included in this amount where applicable.
 - 1.92.2 The Labor Costs shall <u>not be less than 80% of</u> the latest edition of the "NECA Manual of Labor Units" <u>normal column</u>.
- 1.93 Conduit pricing for conduits of all types sized 3" or smaller.

When changes in the scope of work require the Contractor to estimate conduit Installations, they shall **NOT include labor values (only material cost may be included)** for any of the below items. The labor values for conduit installation represented in the NECA manual are inflated to a point where additional labor for the below items can not be justified.

1.93.1 Couplings.

Lakeside Union School District

- 1.93.2 Set Screw or Compression Fittings, locknuts, Bushings and washers.
- 1.93.3 Conduit straps and associated screws or nails.
- 1.93.4 LB fittings or other specialty fittings or specialty mounting hardware may be included where needed.
- 1.94 Wire pricing for all types and sizes.

When changes in the scope of work require the Contractor to estimate wire installations, they shall **NOT include labor values (only material cost may be included)** for any of the below items. The labor values for wire installation represented in the NECA manual are inflated to a point where additional labor for the below items can not be justified.

- 1.94.1 Locknuts, Bushings, tape, wire markers.
- 1.95 When changes in the scope of work require other equipment installations such as lighting fixtures, panelboards, switchboards, wiring devices, communications equipment etc. the Contractor shall **NOT include labor values (only material cost may be included)** for any of the below items. The labor values for these equipment items represented in the NECA manual are inflated to a point where additional labor for the below items can not be justified.
 - 1.95.1 Associated screws, nails, bolts, anchors or supports.
 - 1.95.2 Locknuts, washers, tape.
- 1.96 The total labor hours for extra work will be required to be calculated as follows:
 - 1.96.1 Change orders with 1 to 30 total labor hours

General Laborer	10%	of total labor hours
Journeyman	10%	of total labor hours
Foreman	80%	of total labor hours

1.96.2 Change orders with 31 to 100 total labor hours

General Laborer	20%	of total labor hours
Journeyman	40%	of total labor hours
Foreman	40%	of total labor hours

1.96.3 Change orders with over 100 total labor hours

General Laborer	30%	of total labor hours
Journeyman	50%	of total labor hours
Foreman	20%	of total labor hours

1.97 When change orders are issued which allow the work to be completed in the normal sequence of construction, the labor rates shall be based on the most current "Prevailing Wage" – straight time total hourly rate. When change orders require the Contractor to work out of sequence the "Prevailing Wage" – daily overtime hourly rate shall apply. Special condition situations shall be reviewed on an individual basis for alternate hourly rate schedules.

Lakeside Union School District

- 1.98 Costs <u>will not</u> be permitted for additional supervision on site or office time for processing any change order other than the 10% overhead allowance as described in Division 1. Cost for special equipment required to install items for an individual change order are permitted and must be individually identified. Lump Sum cost for small tools or any other cost not specifically required for the change order are <u>not</u> permitted.
- 1.99 Contractor estimates shall be formatted to clearly identify each of the following:
 - 1.99.1 Line item description of each type of material or labor item.
 - 1.99.2 Description of quantity for each item.
 - 1.99.3 Description of (material cost per / quantity).
 - 1.99.4 Description of (labor cost per / quantity).
 - 1.99.5 Description of total labor hour breakdown per Foreman, Journeyman or General Laborer as described above.

ELECTRONIC FILES

- 1.100 The Contractor shall make a <u>written</u> request directly to Johnson Consulting Engineers for electronic drawing files. As a part of the written request, please include the following information:
 - 1.100.1 Clearly indicate each drawing sheet needed (i.e., E1.1, E2.1, etc.).
 - 1.100.2 Identify the name, phone number, mailing address and e-mail address of the person to receive the files.
 - 1.100.3 Provide written confirmation and agreement with the requirements described for payment of computer files, as described below.
- 1.101 Detail or riser diagram sheets, or any other drawings other than floor plans or site plans, will not be made available to the Contractor.
- 1.102 Files will only be provided in the AutoCAD format in which they were created.
- 1.103 Requests for files will be processed as soon as possible; a minimum of 7 working days should be the normal processing time. The Contractor shall be completely responsible for requesting the files in time for their use.

END OF SECTION

Lakeside Union School District

SECTION 260519

POWER CONDUCTORS

PART 1 GENERAL

- 1.1 Furnish and install wire and cable for branch circuits and feeders specified herein and as shown on the electrical drawings.
- 1.2 Submittals: Submit manufacturers' data for the following items:
 - 1.2.1 All cables and terminations

1.3 Common submittal mistakes which will result in the submittals being rejected:

- 1.3.1 Not including all items listed in the above itemized description.
- 1.3.2 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining, or clouding the items to be reviewed, or crossing out the items which are not applicable.
- 1.3.3 Not including actual manufacturer's catalog information of proposed products.
- 1.3.4 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements, or "to be determined later" statements. The products being submitted must be the products installed

PART 2 PRODUCTS

- 2.1 Wire and cable Rated 120 volt to 600 volt.
 - 2.1.1 All wire and cable shall be new, 600 volt insulated copper, of types specified below for each application. All wire and cable shall bear the UL label and shall be brought to the job in unbroken packages. Wire insulation shall be the color as specified herein and shall be type THWN-2. Insulated conductors shall be installed in all exterior exposed raceways. Conductors for branch circuit lighting, receptacle, power and miscellaneous systems shall be a minimum of No. 12 AWG. Increase conductor size to No. 10 AWG for 120 volt circuits greater than 100 feet from the panel to the load and for 277 volt circuits greater than 200 feet from the panel to the load. Circuit home-runs indicated to be larger than No. 12 must be increased the entire length of the circuit, including equipment grounding conductor. Wire sizes No. 14 through No. 10 shall be solid. No. 8 and larger shall be stranded.
 - 2.1.2 Aluminum conductors will be permitted (only where specifically identified on the drawings. See "600 Volt Feeder Schedule") in sizes 2/0 or larger. Conductors shall be listed by Underwriters Laboratories (UL) and suitable for operation at 600 volts or less, at a maximum operating temperature of 90N C maximum in wet or dry locations. Conductors shall be marked "SUN-RES". Aluminum alloy conductors shall be compact stranded conductors of STABILOY® (AA-8030) as manufactured by Alcan Cable or Listed equal. AA-8000 Series aluminum alloy conductor material shall be recognized by The Aluminum Association.
 - 2.1.3 MC type armored cable shall not be permitted.
- 2.2 Wire and cable for systems below 120 volts.

Lakeside Union School District

2.2.1 All low voltage and communications systems cables routed underground shall be provided with a moisture resistant outer jacket, West Penn "Aquaseal" or equal, unless otherwise specified.

PART 3 EXECUTION

- 3.1 Wire and cable shall be pulled into conduits without strain using powdered soapstone, mineralac, or other approved lubricant. In no case shall wire be repulled if same has been pulled out of a conduit run for any purpose. No conductor shall be pulled into conduit until conduit system is complete, including junction boxes, pull boxes, etc.
- 3.2 All connections of wires shall be made as noted below:
 - 3.2.1 Connections to outlets and switches: Wire formed around binding post of screw.
 - 3.2.2 No. 10 wire and smaller: Circuit wiring connections to lighting fixtures and other hard wired equipment shall be made with pressure type solderless connectors, Buchanan, Scotchlock, Wing Nut, or approved equal. Alternate "WAGO" #773 series or "IDEAL" #32, 33, 34 and 39 series push wire style connectors are also acceptable.
- 3.3 All wiring shall be continuous without splicing unless where specifically noted on the drawings or where permitted below.
 - 3.3.1 No. 10 wire and smaller above grade: Quantities as needed, connection made with pressure type solderless connectors, Scotchlock or equal.
 - 3.3.2 No. 10 wire and smaller below grade: Quantities as needed, connection made with 'Raychem' long barrel compression terminals with crimping tool and quantity of crimps as recommended by manufacturer, provide 'Raychem' WCSM-S series in-line heat shrink, sealant coated splice kit. Alternate products must be UL listed for direct burial/submersible and rated to (1000V).
 - 3.3.3 No. 8 wire and larger above grade: Quantities <u>only</u> where indicated, 'Raychem' long barrel compression terminals with crimping tool and quantity of crimps as recommended by manufacturer, provide 'Raychem' WCSM-S series in-line heat shrink, sealant coated splice kit. Alternate products must be UL listed for direct burial/submersible and rated to (1000V).
 - 3.3.4 No. 8 wire and larger below grade: Quantities <u>only</u> where indicated, 'Raychem' long barrel compression terminals with crimping tool and quantity of crimps as recommended by manufacturer, provide 'Raychem' WCSM-S series in-line heat shrink, sealant coated splice kit. Alternate products must be UL listed for direct burial/submersible and rated to (1000V).
- 3.4 All wiring throughout shall be color coded as follows:

	480 volt system	208 or 240 volt system
A Phase	Brown	Black
B Phase	Orange	Red
C Phase	Yellow	Blue
Neutral	Grey	White
Ground	Green	Green

Lakeside Union School District

- 3.5 Wiring must be color coded throughout its entire length, except feeders may have color coded plastic tape at both ends and any other accessible point.
- 3.6 All control wiring in a circuit shall be color coded, each phase leg having a separate color, and with all segments of the control circuit, whether in apparatus or conduit, utilizing the same color coding.
- 3.7 At all terminations of control wiring, the wiring shall have a numbered T&B or Brady plastic wire marker.
- 3.8 Cables when installed are to be properly trained in junction boxes, etc., and in such a manner as to prevent any forces on the cable which might damage the cable.
- 3.9 All conductors to be installed into a common raceway, shall be pulled into the raceway at the same time.
- 3.10 All conductors shall be installed in such a manner as to not exceed the manufacturers' recommended pulling tension and bending radius. The equipment used for pulling must be specifically designed for the purpose. Motorized vehicles such as pickup trucks, are not acceptable.

END OF SECTION

Lakeside Union School District

SECTION 260526

GROUNDING

PART 1 GENERAL

- 1.1 Furnish and install grounding and grounding conductors and electrodes as specified herein and as shown on the drawings.
- 1.2 Submit catalog data for all components.
- 1.3 Common submittal mistakes which will result in the submittals being rejected:
 - 1.3.1 Not including all items listed in the above itemized description.
 - 1.3.2 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining or clouding the items to be reviewed, or crossing out the items which are not applicable.
 - 1.3.3 Not including actual manufacturer's catalog information of proposed products.
 - 1.3.4 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements, or "to be determined later" statements. The products being submitted must be the products installed.

PART 2 EXECUTION

2.1 Grounding

- 2.1.1 All panelboard cabinets, equipment, enclosures, and complete conduit system shall be grounded securely in accordance with pertinent sections of CEC Article 250. Conductors shall be copper. All electrically operated equipment shall be bonded to the grounded conduit system. All non-current carrying conductive surfaces that are likely to become energized and subject to personal contact shall be grounded by one or more of the methods detailed in CEC Article 250. All ground connections shall have clean contact surfaces. Install all grounding conductors in conduit and make connections readily accessible for inspection.
- 2.1.2 Provide an insulated equipment grounding conductor in all branch circuit and feeder raceway systems, sized in accordance with CEC 250-122.
- 2.1.3 Provide an additional individual insulated grounding conductor for each circuit which contains an isolated ground receptacle or surge suppression receptacle.
- 2.1.4 Grounding of metal raceways shall be assured by means of provisions of grounding bushings on feeder conduit terminations at the panelboard, and by means of insulated continuous stranded copper grounding wire extended from the ground bus in the panelboard to the conduit grounding bushings.
- 2.1.5 Except for connections which access for periodic testing is required, make grounding connections which are buried or otherwise inaccessible by exothermite type process.
- 2.1.6 The following ohmic values shall be test certified for each item listed. A written report signed and witnessed by the project IOR shall be provided to the engineer.

Lakeside Union School District

If the ohmic value listed cannot be obtained additional grounding shall be installed to reach the value listed.

END OF SECTION

Lakeside Union School District

SECTION 260533

CONDUIT AND FITTINGS

PART 1 GENERAL

- 1.1 Furnish and install conduit and fittings as shown on the drawings and as specified herein.
- 1.2 Submit Manufacturer's data on the following:
 - 1.2.1 Conduit.
 - 1.2.2 Fittings
 - 1.2.3 Fire stopping Material.

1.3 Common submittal mistakes which will result in the submittals being rejected:

- 1.3.1 Not including all items listed in the above itemized description.
- 1.3.2 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining or clouding the items to be reviewed, or crossing out the items which are not applicable.
- 1.3.3 Not including actual manufacturer's catalog information of proposed products.
- 1.3.4 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements, or "to be determined later" statements. The products being submitted must be the products installed.

PART 2 PRODUCTS

- 2.1 Rigid steel conduit, intermediate metal conduit (IMC), electrical metallic tubing (EMT) and flexible metallic conduit shall be steel, hot dipped galvanized after fabrication.
- 2.2 PVC conduit shall be Carlon or approved equal.
- 2.3 Liquid tight flexible metal conduit shall be Anaconda Sealtite type UA or approved equal. Fittings shall be Appleton, Crouse-Hinds, Steel City, T&B, or equivalent.
- 2.4 MC type armored cable, shall not be permitted.
- 2.5 Fire stopping material shall provide an effective seal against fire, heat, smoke and fire gases. Fire stopping material shall be tested to comply with ASTME 814 and UL 1479. The submittal for this product shall include the UL listed system number and installation requirements for each type of penetration seal required for this project.
- 2.6 Each length of conduit shall be stamped with the name or trademark of the manufacturer and shall bear the UL label.
- 2.7 All plastic conduit shall be rigid, schedule 40, heavy wall PVC. All PVC conduit shall be UL listed. Underground utility company conduits shall comply with local utility co. requirements.
- 2.8 Plastic conduit shall be stored on a flat surface, and protected from the direct rays of the sun.

Lakeside Union School District

PART 3 FITTINGS

- 3.1 All metallic fittings, including those for EMT, flexible conduit, or malleable iron. Die cast fittings of any other material are not permitted.
- 3.2 Locknuts shall be steel or malleable iron with sharp clean cut threads.
- 3.3 Entrance seals shall be 0.Z. type FSK or equivalent.
- 3.4 Bushings and locknuts: Where conduits enter boxes, panels, cabinets, etc., they shall be rigidly clamped to the box by locknuts on the outside, and a lock nut and plastic bushing on the inside of the box. All conduits shall enter the box squarely.
- 3.5 Furnish and install insulated bushings as per CEC article No. 300 4 (F) on all conduits. The use of insulated bushings does not exclude the use of double locknuts to fasten conduit to the box.
- 3.6 Transition from plastic to steel conduits shall be with PVC female threaded adaptors.
- 3.7 Couplings and connectors for rigid steel or IMC conduit must be threaded, or compression type (set screw fittings are not permitted).
- 3.8 Couplings and connectors for EMT shall be compression, watertight. Set screw connectors are not acceptable, except for systems below 120 volts.
- 3.9 MC or MC-PCS type armored cable shall be provided with listed clamp type die cast zinc set screw connectors. Anti-short bushings shall be provided at all cable ends.
- 3.10 Connectors for flexible metal conduit shall be steel or malleable iron with screw provided to clinch the conduit into the adapter body. For sizes up to ¾" a screw-in, "Jake type," fitting may be used.
- 3.11 Install approved expansion fittings, or liquid tight flex conduit with a minimum 6" slack for conduits passing through all expansion and seismic joints.

PART 4 EXECUTION

- 4.1 All branch circuits shall be installed concealed in walls or above ceilings or in concrete floor slabs. PVC conduits installed in concrete floor slabs shall transition to PVC coated rigid steel where conduits penetrate above finished grade or finished floor.
- 4.2 Conduit sizes for various numbers and sizes of wire shall be as required by the CEC, but not smaller than ½" for power wiring and ¾" for communications and fire alarm systems unless otherwise noted. Conduit in slab or below grade shall be ¾" minimum trade size, unless otherwise identified.
- 4.3 Conduit size shall be such that the required number and sizes of wires can be easily pulled in and the Contractor shall be responsible for the selection of the conduit sizes to facilitate the ease of pulling. Conduit sizes shown on the drawings are minimum sizes in accordance with appropriate tables in the CEC. If because of bends or elbows a larger conduit size is required, the Contractor shall so furnish without further cost to the Owner.
- 4.4 The Contractor shall be entirely responsible for the proper protection of this work from the other trades on the job. When conduit becomes bent or holes are punched through

Lakeside Union School District

same, or outlets moved after being roughed-in, the Contractor shall replace same, without additional cost to the Owner.

- 4.5 Rigid steel conduit or IMC shall be used as follows:
 - 4.5.1 Exposed exterior locations.
 - 4.5.2 Exposed interior locations below eight feet above floor, except in electrical rooms and closets.
 - 4.5.3 In hazardous or classified areas as required by CEC.
- 4.6 EMT conduit shall be used for areas as follows:
 - 4.6.1 All interior communications, signal, and data networking systems.
 - 4.6.2 All interior power wiring systems where not required to be in rigid steel, IMC or flexible conduit.
- 4.7 Flexible conduit shall be used for areas as follows:
 - 4.7.1 To connect motors, transformers, and other equipment subjected to vibration or where specifically detailed on the drawings.
 - 4.7.2 Flexible conduit shall not be used to replace EMT in other locations where the conduit will be exposed.
 - 4.7.3 Flexible metal conduit shall be ferrous. Installation shall be such that considerable slack is realized. The conduit shall contain separate code sized grounding conductor.
 - 4.7.4 Liquid tight flexible conduit shall be used in conformance with CEC in lengths not to exceed 4'. For equipment connections, route the conduit at 90 degrees to the adjacent path for point of connection. The conduit shall contain separate code sized grounding conductor. Use liquid tight flexible conduit for all equipment connections exposed in possible wet, corrosive or oil contaminated areas, e.g., shops and outside areas.
- 4.8 Plastic conduit shall be used for all exterior underground, in slab, and below slab on grade conduit installations. Install bell ends at all conduit terminations in manholes and pull boxes. Where plastic conduit transitions from below grade to above grade, no plastic conduit shall extend above finished exterior grade, or above interior finished floor level.
- 4.9 Plastic conduit joints shall be made up in accordance with the manufacturer's recommendations for the particular conduit and coupling selected. Conduit joint couplings shall be made watertight. Plastic conduit joints shall be made up by brushing a plastic solvent cement on the inside of a plastic fitting and on the outside of the conduit ends. The conduit and fitting shall then be slipped together with a quick one-quarter turn twist to set the joint tightly.
- 4.10 All underground conduit depths shall be as detailed on the drawings or a minimum of 30" below finished grade (when not specifically detailed otherwise), for all exterior underground conduits. Where concrete slurry or concrete encasement is provided, include "Red" color dye in mixture.

260533-3

Lakeside Union School District

- 4.11 All underground conduits for power systems (600v and higher), shall be concrete encased and a minimum of 48" below grade or as detailed on the drawings. Where concrete slurry or concrete encasement is provided, include "Red" color dye in mixture.
- 4.12 Conduit shall be continuous from outlet to outlet, cabinet or junction box, and shall be so arranged that wire may be pulled in with the minimum practical number of junction boxes.
- 4.13 All conduits shall be concealed wherever possible. All conduit runs may be exposed in mechanical equipment rooms, electrical equipment rooms, electrical closets, and in existing or unfinished spaces. No conduit shall be run exposed in finished areas without the specific approval of the Architect.
- 4.14 All raceways which are not buried or embedded in concrete shall be supported by straps, clamps, or hangers to provide a rigid installation. Exposed conduit shall be run in straight lines at right angles to or parallel with walls, beams, or columns. In no case shall conduit be supported or fastened to other pipes or installed to prevent the ready removal of other trades piping. Wire shall not be used to support conduit.
- 4.15 It shall be the responsibility of the Contractor to consult the other trades before installing conduit and boxes. Any conflict between the location of conduit and boxes, piping, duct work, or structural steel supports, shall be adjusted before installation. In general, large pipe mains, waste, drain, and steam lines shall be given priority.
- 4.16 Conduits above lay-in grid type ceilings shall be installed in such a manner that they do not interfere with the "lift-out" feature of the ceiling system. Conduit runs shall be installed to maintain the following minimum spacing wherever practical.
 - 4.16.1 Water and waste piping not less than 3".
 - 4.16.2 Steam and steam condensate lines not less than 12".
 - 4.16.3 Radiation and reheat lines not less than 6".
- 4.17 Provide all necessary sleeves and chases required where conduits pass through floors or walls as part of the work of this section. Core drilling will only be permitted where approved by the Architect.
- 4.18 All empty conduits and surface mounted raceways shall be provided with a ¼" polypropylene plastic pull cord and threaded plastic or metal plugs over the ends. Fasten plastic "Dymo" tape label to exposed spare conduit to identify "power" or "communication" system, and to where it goes.
- 4.19 The ends of all conduits shall be securely plugged, and all boxes temporarily covered to prevent foreign material from entering the conduits during construction. All conduit shall be thoroughly swabbed out with a dry swab to remove moisture and debris before conductors are drawn into place.
- 4.20 Bending: Changes in direction shall be made by bends in the conduit. These shall be made smooth and even without flattening the pipe or flaking the finish. Bends shall be of as long a radius as possible, and in no case smaller than CEC requirements.
 - 4.20.1 For power conduits for conductors (600v and below), provide minimum 36" radius (vertical) and 72" radius (horizontal) bends.
 - 4.20.2 For power conduits for conductors (greater than 600v), provide minimum 72" radius (vertical) and 72" radius (horizontal) bends.

Lakeside Union School District

- 4.21 Supports: Conduit shall be supported at intervals as required by the California Electrical Code. Where conduits are run individually, they shall be supported by approved conduit straps or beam clamps. Straps shall be secured by means of toggle bolts on hollow masonry, machine screws or bolts on metal surfaces, and wood screws on wood construction. [No perforated straps or wire hangers of any kind will be permitted. Where individual conduits are routed, or above ceilings, they shall be supported by hanger rods and hangers.] Conduits installed exposed in damp locations shall be provided with clamp backs under each conduit clamp, to prevent accumulation of moisture around the conduits.
- 4.22 Where a number of conduits are to be run exposed and parallel, one with another, they shall be grouped and supported by trapeze hangers. Hanger rods shall be fastened to structural steel members with suitable beam clamps or to concrete inserts set flush with surface. A reinforced rod shall be installed through the opening provided in the concrete inserts. Beam clamps shall be suitable for structural members and conditions. Rods shall be galvanized steel 3/8" diameter minimum. Each conduit shall be clamped to the trapeze hanger with conduit clamps.
- 4.23 All concrete inserts and pipe clamps shall be galvanized. All steel bolts, nuts, washers, and screws shall be galvanized or cadmium plated. Individual hangers, trapeze hangers and rods shall be prime-coated.
- 4.24 Openings through fire rated floors/walls and/or smoke walls through which conduits pass shall be sealed by Fire stopping material to comply with Division 1 to seal off flame, heat, smoke and fire gases. Sleeves shall be provided for power or communication system cables which are not installed in conduits, and shall be sealed inside and out to comply with manufacturers UL system design details. Where multiple conduits and/or cable tray systems pass thru fire-rated walls at one location, the Contractor shall submit copies of the manufacturers UL system design details proposed for use on this project. All Fire stopping material shall have an hourly fire-rating equal to or higher than the fire rating of the floor or wall through which the conduit, cables, or cable trays pass.
- 4.25 Provide cap or other sealing type fitting on all spare conduits. Conduits stubbed into buildings from underground where cable only extends to equipment, the conduit/cable end shall be sealed to prevent moisture from entering the room or space.
- 4.26 All conduits which are part of a paralleled feeder or branch circuit shall be installed underground.
- 4.27 All conduits which are required as a part of systems specified in Divisions 27 or 28, or any other low voltage communication systems, shall be furnished and installed by the Division 26 Contractor.
 - 4.27.1 The Contractor shall coordinate all conduit requirements with each system supplier prior to bid to determine special conduit system requirements.
 - 4.27.2 The Contractor shall provide a pull rope in all conduits for these systems.
 - 4.27.3 The Contractor shall provide conduit sleeves for all open cable installations thru rated walls or block walls. Provide conduit from each building main termination cabinet or backboard to the nearest accessible ceiling for access into all electrical or communications rooms.
- 4.28 In addition to the above requirements, the following requirements shall apply to all data networking conduits:

Lakeside Union School District

- 4.28.1 Flexible metal conduit may only be used where required at building seismic and/or expansion joints.
- 4.28.2 All underground conduits shall be provided with minimum 24" radius elbows (vertical) and 60" (horizontal).
- 4.28.3 No length of conduit above grade shall be installed to exceed 150 feet between pull boxes, or points of connection, unless where specifically detailed on the drawings.
- 4.28.4 No length of conduit shall be installed to exceed two 90 degree bends between pull boxes, or points of connection, unless where specifically detailed on the drawings.
- 4.29 Where surface raceways are installed in interior spaces, the Contractor shall take care to route in straight lines at right angles to or parallel with walls, beams, or columns. All raceways and device boxes shall be securely screwed to the finish surface with zinc screw "Auger" anchors Stk #ZSA1K by Gray Bar Electric or equal. Tape adhesive application will not be permitted.
- 4.30 The Contractor who installs surface raceway systems shall provide and install complete with wire retention clips, one for every (8) vertical feet or (5) horizontal feet or portion thereof. This Contractor shall also provide <u>each</u> raceway channel with pull strings.
- 4.31 It shall be the responsibility of the Contractor installing the raceway to coordinate the installation of raceway device plates and inserts with the communications or data contractors.

END OF SECTION

Lakeside Union School District

SECTION 260534

OUTLET AND JUNCTION BOXES

PART 1 GENERAL

- 1.1 Furnish and install electrical wiring boxes as specified and as shown on the electrical drawings.
- 1.2 Submit manufacturer's data for all items.

1.3 Common submittal mistakes which will result in the submittals being rejected:

- 1.3.1 Not including all items listed in the above itemized description.
- 1.3.2 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining or clouding the items to be reviewed, or crossing out the items which are not applicable.
- 1.3.3 Not including actual manufacturer's catalog information of proposed products.
- 1.3.4 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements, or "to be determined later" statements. The products being submitted must be the products installed.

PART 2 PRODUCTS

- 2.1 Boxes shall be as manufactured by Steel City, Appleton, Raco, or approved equal.
- 2.2 All boxes must conform to the provisions of Article 370 of the CEC. All boxes shall be of the proper size to accommodate the quantity of conductors enclosed in the box. Minimum box size shall be 4" square x $1-\frac{1}{2}$ " deep.
- 2.3 Boxes generally shall be hot dipped galvanized steel with knockouts. Boxes on exterior surfaces or in damp locations shall be corrosion resistant, cast feraloy and shall have threaded hubs for rigid conduit and neoprene gaskets for their covers. Boxes shall be Appleton Type FS, Crouse-Hinds, or the approved equal. Conduit bodies shall be corrosion resistant, cast malleable iron. Conduit bodies shall have threaded hubs for rigid conduit and neoprene gaskets for their covers. Conduit bodies shall be Appleton Unilets, Crouse-Hinds, or the approved equal. Where recessed, boxes shall have square cut corners.
- 2.4 Deep boxes shall be used in wall covered by wainscot or paneling and in walls or glazed tile, brick, or other masonry which will not be covered with plaster. Through the wall type boxes shall not be used unless specifically called for. All boxes shall be nongangable. Boxes in concrete shall be of a type to allow the placing of conduit without displacing the reinforcing bars. All lighting fixture outlet boxes shall be equipped with the proper fittings to support and attach a light fixture.
- 2.5 All light, switch, receptacle, fire alarm devices and similar outlets shall be provided with approved boxes, suitable for their function. Back boxes shall be furnished and installed as required for the equipment and/or systems under this contract.
- 2.6 Pull and junction boxes shall be code gauge boxes with screw covers. Boxes shall be rigid under torsional and deflecting forces and shall be provided with angle from framing where required. Boxes shall be 4" square with a blank cover in unfinished areas and with

Lakeside Union School District

a plaster ring and blank cover in finished areas. Covers for flush mounted oversize boxes shall extend $\frac{3}{4}$ " past boxes all around. Covers for 4" square boxes shall extend $\frac{1}{4}$ " past box all around.

- 2.7 All terminal cabinets and junction boxes or equipment back boxes which are required as a part of systems specified in Divisions 27 or 28, or any other low voltage communication systems, shall be furnished and installed by the Division 26 Contractor.
 - 2.7.1 The Division 26 Contractor shall coordinate all box requirements with each system supplier prior to bid to determine special cabinet or back box requirements. The Contractor shall also provide stainless steel blank cover plates for all low voltage systems installed for future equipment.
 - 2.7.2 The Contractor shall provide all plywood backboards indicated on walls or inside equipment enclosures. All backboards shall be a minimum of 3/4" thick fire rated type plywood.
 - 2.7.3 The Contractor shall coordinate exact rough in locations and requirements with each system supplier.
- 2.8 In addition to the above requirements, boxes for data networking wiring and equipment shall comply with the following:
 - 2.8.1 All boxes shall be a minimum of 4-11/16" square x 2-1/8" deep.
 - 2.8.2 Where pull boxes are required on individual conduits 1-1/4" or smaller, provide 4-11/16" square x 2-1/8" deep boxes. Where pull boxes are required on conduits larger than 1-1/4" for straight pull through, provide eight times the conduit trade size for box length. Where pull boxes are required on conduits larger than 1-1/4" for an angle or a U-pull through installation, provide a minimum distance of six times the conduit trade size between the entering and exiting conduit run for each cable.
- 2.9 Recessed boxes installed in fire rated floors/walls and /or smoke walls shall be sealed by Fire stopping material to comply with Division 1 to seal off flame, heat, smoke and fire gases. The Contractor shall submit copies of the manufacturers UL system design details proposed for use on this project. All Fire stopping material shall have an hourly fire-rating equal to or higher than the fire rating of the floor or wall through which the conduit, cables, or cable trays pass.

PART 3 EXECUTION

- 3.1 Boxes shall be installed where required to pull cable or wire, but in finished areas only by approval of the Architect. Boxes shall be rigidly attached to the structure, independent of any conduit support. Boxes shall have their covers accessible. Covers shall be fastened to boxes with machine screws to ensure continuous contact all around. Covers for surface mounted boxes shall line up evenly with the edges of the boxes.
- 3.2 Outlets are only approximately located on the plans and great care must be used in the actual location of the outlets by consulting the various detailed drawings and specifications. Outlets shall be flush with finished wall or ceiling, boxes installed symmetrically on such trim or fixture. Refer to drawings for location and orientation of all outlet boxes.
- 3.3 Furnish and install all plaster rings as may be required. Plaster rings shall be installed on all boxes where the boxes are recessed. Plaster rings shall be of a depth to reach the

Lakeside Union School District

finished surface. Where required, extension rings shall be installed so that the plaster ring is flush with the finished surface.

- 3.4 All cabinets and boxes shall be secured by means of toggle bolts on hollow masonry; expansion shields and machine screws or standard precast inserts on concrete or solid masonry; machine screws or bolts on metal surfaces and wood screws on wood construction. All wall and ceiling mounted outlet boxes shall be supported by bar supports extending from the studs or channels on either side of the box. Boxes mounted on drywall or plaster shall be secured to wall studs or adequate internal structure.
- 3.5 Boxes with unused punched-out openings shall have the openings filled with factory-made knockout seals.
- 3.6 Where standby power and normal power are to be located in the same outlet box or 480V in a switch box, install partition barriers to separate the various systems.
- 3.7 All device boxes and junction boxes for fire alarm system shall be painted red and shall be 4-11/16" square by 2-1/8" deep. No exceptions.

END OF SECTION

Lakeside Union School District

SECTION 260923

DIGITAL LIGHTING CONTROL SYSTEM

PART 1 GENERAL

- 1.1 Furnish and install automatic lighting controls as shown on the drawings and as specified herein Submit manufacturers' data on all items.
- 1.2 Equipment shall be UL listed, comply with those portions of CEC as applicable to electrical wiring work and comply with those portions of NEMA or UL pertaining to types of electrical equipment and enclosures. The equipment shall also be certified by the California Energy Commission.
- 1.3 The manufacturer of the lighting control equipment shall have been actively engaged in the manufacture of the types and capacities required for the application for at least three years. It is the sole responsibility of the Division 26 contractor to ensure that submittals of material meets the performance specifications contained herein.
- 1.4 All components and assemblies shall be factory pre-tested and burned-in as a system for 48 hours prior to shipping.
- 1.5 Control Intent Control Intent includes, but is not limited to:
 - 1.5.1 Defaults and initial calibration settings for such items as time delay, sensitivity, fade rates, etc.
 - 1.5.2 Initial sensor and switching zones
 - 1.5.3 Initial time switch settings
 - 1.5.4 Task lighting and receptacle controls
 - 1.5.5 Emergency Lighting control (if applicable)
 - 1.5.6 Manufacturer shall submit a point-to-point line diagram of the system configuration including all devices and accessories required to complete the system.
 - 1.5.7 Manufacturer shall submit data sheets on the components and system submitted, with descriptions of hardware and software components.

SYSTEM DESCRIPTION & OPERATION

- 1.6 The Lighting Control and Automation system as defined under this section covers the following equipment:
 - 1.6.1 Digital Occupancy Sensors Self-configuring, digitally addressable and calibrated occupancy sensors with LCD display and two-way active infrared (IR) communications
 - 1.6.2 Digital Switches Self-configuring, digitally addressable pushbutton on/off, dimming, and scene switches with two-way active infrared (IR) communications
 - 1.6.3 Handheld remotes for personal control One-button dimming, two-button on/off, or five-button scene remotes provide control using infrared communications.

Lakeside Union School District

Remote may be configured in the field to control selected loads or scenes without special tools

- 1.6.4 Digital Daylighting Sensors Single-zone closed loop, multi-zone open loop and single-zone dual-loop daylighting sensors with two-way active infrared (IR) communications can provide switching, bi-level, tri-level or dimming control for daylight harvesting
- 1.6.5 Digital Room Controllers Self-configuring, digitally addressable one, two or three relay plenum-rated controllers for on/off control. Selected models include 0-10 volt or line voltage forward phase control dimming outputs and integral current monitoring capabilities

LIGHTING CONTROL APPLICATIONS

- 1.7 Unless relevant provisions of the applicable local Energy Codes are more stringent, provide a minimum application of lighting controls as follows:
 - 1.7.1 Space Control Requirements Provide occupancy/vacancy sensors with Manual- or Partial-ON functionality in all spaces except toilet rooms, storerooms, library stacks, or other applications where hands-free operation is desirable and Automatic-ON occupancy sensors are more appropriate. Provide Manual-ON occupancy/vacancy sensors for any enclosed office, conference room, meeting room, open plan system and training room. For spaces with multiple occupants, or where line-of-sight may be obscured, provide ceiling- or corner-mounted sensors and Manual-ON switches.
 - 1.7.2 Bi-Level Lighting Provide multi-level controls in all spaces except toilet rooms, storerooms, library stacks, or applications where variable dimming is used
 - 1.7.3 Task Lighting / Plug Loads Provide automatic shut off of non-essential plug loads and task lighting in all spaces except toilet rooms and storerooms. Provide Automatic-ON of plug loads whenever spaces are occupied. For spaces with multiple occupants a single shut off consistent with the overhead lighting may be used for the area
 - 1.7.4 Daylit Areas Provide daylight-responsive automatic control in all spaces (conditioned or unconditioned) where daylight contribution is available as defined by relevant local building energy code:
 - 1.7.4.1 All luminaires within code-defined daylight zones shall be controlled separately from luminaires outside of daylit zones
 - 1.7.4.2 Daytime setpoints for total ambient illumination (combined daylight and electric light) levels that initiate dimming shall be programmed in compliance with relevant local building energy codes
 - 1.7.4.3 Multiple-leveled switched daylight harvesting controls may be utilized for areas marked on drawings
 - 1.7.4.4 Provide smooth and continuous daylight dimming for areas marked on drawings. Daylighting control system may be designed to turn off electric lighting when daylight is at or above required lighting levels, only if system functions to turn lamps back on at dimmed level, rather than turning full-on prior to dimming.

Lakeside Union School District

- 1.7.5 Conference, meeting, training, auditoriums, and multipurpose rooms shall have controls that allow for independent control of each local control zone. Rooms larger than 300 square feet shall instead have at least four (4) pre-set lighting scenes unless otherwise specified. Occupancy / vacancy sensors shall be provided to extinguish all lighting in the space. Spaces with up to four moveable walls shall include controls that can be reconfigured when the room is partitioned.
- 1.8 Submit shop drawings and manufacturers' data for all components including:
 - 1.8.1 Manufacturer shall submit in bill-of-material form an itemized list of all materials supplied to meet the specification.
 - 1.8.2 Manufacturer shall submit dimensional drawings of lighting control panel(s).
 - 1.8.3 Manufacturer shall submit a point-to-point line diagram of the system configuration including all devices and accessories required to complete the system.
 - 1.8.4 Manufacturer shall submit data sheets on the components and system submitted, with descriptions of hardware and software components
 - 1.8.5 Composite wiring and/or schematic diagram of each control circuit as proposed to be installed
 - 1.8.6 Show exact location of all digital devices, including at minimum sensors, room controllers, and switches for each area on reflected ceiling plans. (Contractor must provide AutoCAD format reflected ceiling plans)
 - 1.8.7 Provide room/area details including products and sequence of operation for each room or area. Illustrate typical acceptable room/area connection topologies
 - 1.8.8 Network riser diagram including floor and building level details. Include network cable specification and end-of-line termination details, if required. Illustrate points of connection to integrated systems. Coordinate integration with mechanical and/or other trades

QUALITY ASSURANCE

1.9 Manufacturer: Minimum 10 years' experience in manufacture of lighting controls

PROJECT CONDITIONS

- 1.10 Do not install equipment until following conditions can be maintained in spaces to receive equipment:
 - 1.10.1 Ambient temperature: 0° to 40° C (32° to 104° F)
 - 1.10.2 Relative humidity: Maximum 90 percent, non-condensing.

WARRANTY

1.11 Provide a five year limited manufacturer's warranty on all room control devices and panels

Lakeside Union School District

PART 2 PRODUCTS

- 2.1 Acceptable Manufacturers: WattStopper, Digital Lighting Management (DLM)
 - Substitutions: Nlight Network Control system from Sensorswitch
- 2.2 Bidder's wishing to obtain approval on manufacturers other than those specified in these specifications or on the drawings shall comply with the following procedures:
 - 2.2.1 All substitution requests shall be submitted to the Architect / Engineer no less than 10 business days prior to the project bid opening date. Approvals when accepted will be issued in the form of an addendum to the contract. No consideration for substitutions will be provided after the award of the contract.
 - 2.2.2 The substitution request must include a statement indicating how the substituted product may impact the completion of the project.
 - 2.2.3 The substitution request must include a statement indicating the difference in price (both list price and Contractor price) between the specified product and the substitution.
 - 2.2.4 The substitution request must include a detailed analysis indicating <u>any</u> differences between the specified product and the substitution.
 - 2.2.5 Catalog literature for both the specified and the substitution shall be provided along with contact information of the manufacturer for the substituted product.
- 2.3 The contractor shall pay the Engineer (at their current standard hourly rates) for the time spent reviewing substitutions. These costs will be included as an addendum to be issued to all bidders to include in their proposals, and must be paid to the Engineer within 60 days of award of the project.

DIGITAL LIGHTING CONTROLS

SYSTEM REQUIREMENTS

- 2.4 System shall have an architecture that is based upon three main concepts; 1) intelligent lighting control devices 2) standalone lighting control zones 3) network backbone for remote or time based operation.
- 2.5 Intelligent lighting control devices shall consist of one or more basic lighting control components; occupancy sensors, photocell sensors, relays, dimming outputs, manual switch stations, and manual dimming stations. Combining one or more of these components into a single device enclosure should be permissible so as to minimize overall device count of system.
- 2.6 System must interface directly with intelligent LED luminaires such that only CAT-5 cabling is required to interconnect luminaires with control components such as sensors and switches (see *Networked LED Luminaire* section)
- 2.7 Intelligent lighting control devices shall communicate digitally, require <4 mA of current to function (Graphic wall stations excluded), and posses RJ-45 style connectors.

Lakeside Union School District

- 2.8 Lighting control zones shall consist of one or more intelligent lighting control components, be capable of stand-alone operation, and be capable of being connected to a higher level network backbone.
- 2.9 Devices within a lighting control zone shall be connected with CAT-5e low voltage cabling in any order.
- 2.10 Lighting control zone shall be capable of automatically configuring itself for default operation without any start-up labor required.
- 2.11 Individual lighting zones must continue to provide a user defined default level of lighting control in the event of a system communication failure with the backbone network or the management software becoming unavailable.
- 2.12 Power for devices within a lighting control zone shall come from either resident devices already present for switching (relay device) or dimming purposes, or from the network backbone. Standalone "bus power supplies" shall not be required in all cases.
- 2.13 All switching and dimming for a specific lighting zone shall take place within the devices located in the zone itself (i.e. not in a remotely located devices such as panels) to facilitate system robustness and minimize wiring requirements. Specific applications that require centralized or remote switching shall be capable of being accommodated.
- 2.14 Individual lighting zones shall be capable of being segmented into several "local" channels of occupancy, photocell, and switch functionality for more advanced configurations and sequences of operation.
- 2.15 Devices located in different lighting zones shall be able to communicate occupancy, photocell, and switch information via either the wired or WiFi backbone.
- 2.16 System shall be capable of operating a lighting control zone according to several sequences of operation. System shall be able to change a spaces sequence of operation according to a time schedule so as to enable customized time-of-day, day-of-week utilization of a space. Note operating modes should be utilized only in manners consistent with local energy codes
 - 2.16.1 Auto-On / Auto-Off (via occupancy sensors)
 - 2.16.1.1 Zones with occupancy sensors automatically turn lights on when occupant is detected
 - 2.16.1.2 Zones with occupancy and/or photocell sensors turn lights off when vacancy or sufficient daylight is detected
 - 2.16.1.3 Pressing a switch will turn lights off. The lights will remain off regardless of occupancy until switch is pressed again, restoring the sensor to Automatic On functionality
 - 2.16.2 Manual-On / Auto-Off (also called Semi-Automatic)
 - 2.16.2.1 Pushing a switch will turn lights on.
 - 2.16.2.2 Zones with occupancy and/or photocell sensors turn lights off when vacancy or sufficient daylight is detected

Lakeside Union School District

2.16.3 Manual-On to Auto-On/Auto-Off

- 2.16.3.1 Pushing a switch will turn lights on.
- 2.16.3.2 After initial lights on, zones with occupancy and/or photocell sensors turn lights on/off according to occupancy/vacancy and/or daylight conditions.
- 2.16.3.3 Sequence can be reset via scheduled (ex. daily each morning) events

2.16.4 Auto-to-Override On

- 2.16.4.1 Zones with occupancy sensors automatically turn lights on when occupant is detected.
- 2.16.4.2 Zone lighting then goes into an override on state for a set amount of time or until the next time event returns the lighting to an auto-off style of control.
- 2.16.4.3 Sequence can be reset via scheduled (ex. daily each morning) events

2.16.5 Manual-to-Override On

- 2.16.5.1 Pushing a switch will turn lights on.
- 2.16.5.2 Zone lighting then goes into an override on state for a set amount of time or until the next time event returns the lighting to an auto-off style of control.
- 2.16.5.3 Sequence can be reset via scheduled (ex. daily each morning) events

2.16.6 Auto On / Predictive Off

- 2.16.6.1 Zones with occupancy sensors automatically turn lights on when occupant is detected
- 2.16.6.2 Zones with occupancy and/or photocell sensors turn lights off when vacancy or sufficient daylight is detected.
- 2.16.6.3 If switch is pressed, lights turn off and a short "exit timer" begins. After timer expires, sensor scans the room to detect whether occupant is still present. If no occupancy is detected, zone returns to auto-on. If occupancy is detected, lights must be turned on via the switch.
- 2.16.7 Multi-Level Operation (multiple lighting levels per manual button press)
 - 2.16.7.1 Operating mode designed specifically for bi-level applications
 - 2.16.7.2 Enables the user to cycle through the up to four potential on/off lighting states using only a single button.
 - 2.16.7.3 Eliminates user confusion as to which of two buttons controls which load

Lakeside Union School District

- 2.16.7.4 Three different transition sequences are available in order to comply with energy codes or user preference)
- 2.16.7.5 Mode available as a setting on all nLight devices that have single manual on/off switch (ex. nWSX, nPODM, nPODM-DX).
- 2.16.7.6 Depending on the sequence selected, every button push steps through relays states according to below table
- 2.16.7.7 In addition to achieving bi-level lighting control by switching loads with relays, the ability to command dimming outputs to "step" in a sequence that achieves bi-level operation is present

	Alternating Sequence		Full On Sequence		3 Step On Sequence	
Sequence State #	Relay 1	Relay 2	Relay 1	Relay 2	Relay 1	Relay 2
1	On	Off	On	Off	On	Off
2	Off	On	-	-	Off	On
3	-	-	On	On	On	On
4*	Off	Off	Off	Off	Off	Off

(*step only present for devices without separate off button)

- 2.17 A taskbar style desktop application shall be available for personal lighting control.
- 2.18 An application that runs on "smart" handheld devices (such as an Apple® IPhone®) shall be available for personal lighting control.
- 2.19 Control software shall enable logging of system performance data and presenting useful information in a web-based graphical format and downloadable to .CSV files.
- 2.20 Control software shall enable integration with a BMS via BACnet IP.
- 2.21 System shall provide the option of having pre-terminated plenum rated CAT-5 cabling supplied with hardware.

2.22 START-UP & SUPPORT FEATURES

- 2.22.1 To facilitate start-up, all devices daisy-chained together (using CAT-5) shall automatically be grouped together into a functional lighting control zone.
- 2.22.2 All lighting control zones shall be able to function according to default settings once adequate power is applied and before any system software is installed.
- 2.22.3 Once software is installed, system shall be able to auto-discover all system devices without requiring any commissioning.

Lakeside Union School District

- 2.22.4 All system devices shall be capable of being given user defined names.
- 2.22.5 All devices within the network shall be able to have their firmware reprogrammed remotely and without being physically uninstalled for purposes of upgrading functionality at a later date.
- 2.22.6 All sensor devices shall have the ability to detect improper communication wiring and blink its LED in a specific cadence as to alert installation/startup personnel

PART 3 EXECUTION

PRE-INSTALLATION MEETING

- 3.1 A factory authorized manufacturer's representative shall provide the electrical contractor a functional overview of the lighting control system prior to installation. The contractor shall schedule the pre-installation site visit after receipt of approved submittals to review the following:
 - 3.1.1 Confirm the location and mounting of all digital devices, with special attention to placement of occupancy and daylighting sensors.
 - 3.1.2 Review the specifications for low voltage control wiring and termination.
 - 3.1.3 Discuss the functionality and configuration of all products, including sequences of operation, per design requirements.
 - 3.1.4 Discuss requirements for integration with other trades

CONTRACTOR INSTALLATOIN AND SERVICES

- 3.2 Contractor to install all devices and wiring in a professional manner. All line voltage connections to be tagged to indicate circuit and switched legs
- 3.3 Contractor to install all room/area devices using manufacturer's factory-tested Cat 5e cable with pre-terminated RJ-45 connectors. If pre-terminated cable is not used for room/area wiring, the contractor is responsible for testing each field-terminated cable. The contractor shall supply the Project Engineer with test results.
 - 3.3.1 Performance of installed cables shall satisfy all current addendums to the EIA/TIA 568A standard for Category-5e wiring and the manufacturers installation requirements. The contractor must provide clear room by room, individual cable by cable testing of all UTP wiring provided for the lighting control system.
 - 3.3.2 Upon completion of testing all cable links used as a part of the lighting control system, the Contractor shall supply a copy of the original database files downloaded from the tester in original format on a USB Flash Drive. Contractor shall provide with the testing database files, an original copy of the tester's manufacturer software program (included in original cost) for record management and archiving, in a Window format (i.e., Fluke Linkware software program).
 - 3.3.3 The manufacturer's software program will be used by the Project Engineer to review all test results, and then turned over to the District to keep as their record copy with the final approved test results. Provide (3) copies of tests on USB Flash Drives. Do not submit test results for review in Excel or PDF file formats, as the submittal will be rejected and not reviewed.

Lakeside Union School District

- 3.3.4 Contractor to install any room to room network devices using manufacturersupplied LM-MSTP network wire. Network wire substitution is not permitted and may result in loss of product warranty per DLM SEGMENT NETWORK section of specification.
- 3.3.5 Low voltage wiring topology must comply with manufacturer's specifications. Contractor shall route network wiring as shown in submittal drawings as closely as possible, and shall document final wiring location, routing and topology on as built drawings
- 3.4 Install the work of this Section in accordance with manufacturer's printed instructions unless otherwise indicated. Before start up, contractor shall test all devices to ensure proper communication
- 3.5 Calibrate all sensor time delays and sensitivity to guarantee proper detection of occupants and energy savings
 - 3.5.1 Adjust time delay so that controlled area remains lighted while occupied
- Provide written or computer-generated documentation on the configuration of the system including room by room description including:
 - 3.6.1 Sensor parameters, time delays, sensitivities, and daylighting setpoints.
 - 3.6.2 Sequence of operation, (e.g. manual ON, Auto OFF. etc.)
 - 3.6.3 Load Parameters (e.g. blink warning, etc
- 3.7 Post start-up tuning After 30 days from occupancy contractor shall adjust sensor time delays and sensitivities to meet the Owner's requirements. Provide a detailed report to the Architect / Owner of post start-up activity

FACTORY SERVICES

- 3.8 Upon completion of the installation, the manufacturer's factory authorized representative shall start up and verify a complete fully functional system
- 3.9 The electrical contractor shall provide both the manufacturer and the electrical engineer with three weeks written notice of the system start up and adjustment date
- 3.10 Upon completion of the system start up, the factory-authorized technician shall provide the proper training to the owner's personnel on the adjustment and maintenance of the system

COMMISSIONING SUPPORT SERVICES

3.11 On this project, a commissioning agent will be hired to verify the installation and programming of all building systems, which includes the lighting control system. Manufacturer should include an extra day of technician's time to review the functionality and settings of the lighting control hardware with the commissioning agent, including reviewing submittal drawings and ensuring that instructions on how to configure each device are readily available. Manufacturer is NOT responsible for helping the commissioning agent inspect the individual devices. It will be the commissioning agent's responsibility to create and complete any forms required for the commissioning process,

Lakeside Union School District

- although the manufacturer or contractor may offer spreadsheets and/or printouts to assist the agent with this task.
- 3.12 The commissioning agent shall work with the electrical contractor during installation of the lighting control hardware to become familiar with the specific products. The agent may also accompany the manufacturer's technicians during their start-up work to better understand the process of testing, calibration and configuration of the products. However, the contractor and manufacturer shall ensure that interfacing with the agent does not prevent them from completing the requirements outlined in the contract documents

ACCEPTANCE TESTING SUPPORT SERVICES

3.13 On all California projects, a certified lighting controls acceptance test technician (CLCATT) must verify the installation of the lighting control system. Manufacturer should include an extra day of factory technician's time to assist the CLCATT review the functionality and settings of the lighting control hardware per the requirements in the California State forms. It will be the CLCATT's responsibility to create and complete any forms required for the commissioning process, although the manufacturer or contractor may offer spreadsheets and/or printouts to assist the CLCATT with this task

Lakeside Union School District

SECTION 262416

PANELBOARDS

PART 1 GENERAL

- 1.1 Furnish and install branch circuit panel boards as specified herein and as indicated on the drawings. Submit manufacturers' data on all items.
- 1.2 Submit manufacturers' data on all panel boards and components including:
 - 1.2.1 Enclosures and covers
 - 1.2.2 Breakers
 - 1.2.3 Surge Protective Device (SPD) equipment
 - 1.2.4 Coordination Study & Incident energy level calculations
 - 1.2.5 Common submittal mistakes which will result in the submittals being rejected:
 - 1.2.5.1 Not arranging the circuit breakers in panels to match the orientations indicated on the drawings. In other words, if a 30 amp breaker is shown on the drawing in Space #2, this must be the location it appears on the submittal schedule. Standard factory arrangements will not be accepted.
 - 1.2.5.2 Not including all items listed in the above itemized description.
 - 1.2.5.3 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining or clouding the items to be reviewed, or crossing out the items which are not applicable.
 - 1.2.5.4 Not including actual manufacturer's catalog information of proposed products.
 - 1.2.5.5 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements or "to be determined later" statements. The products being submitted must be the products installed.

PART 2 PRODUCTS

- 2.1 The interrupting rating of circuit breakers shall be 10,000 amps for the 120/208 system and 14,000 amp for 277/480 volt systems unless otherwise required to be higher based on the coordination study. Refer to drawings for higher interrupting rating requirements. All components and equipment enclosures shall be manufactured by the same manufacturer. Circuit breakers shall be permitted to be series rated to limit the available fault current to no more than the above ratings.
- 2.2 All panels shall be fully bussed. Recessed panel enclosures shall be a maximum of 20" wide and 5-3/4" deep for all panels 600 amp rated and less.
- 2.3 All busses shall be tin-plated aluminum and shall be located in the rear of the panelboard cabinet. Individual circuit breakers shall be bolt on type and removable from the cabinet without disturbing the bussing in any way. All panel boards shall contain ground busses.

Lakeside Union School District

- 2.4 Panel covers shall be door in door style, with one lock. Door lock shall allow access to breakers only. Access to wireways without removal of cover shall be permitted by (non removable) screws behind the locked door. Panel cover shall be provided with full length piano hinge. All locks for all panels provided in this project shall be keyed alike.
- 2.5 Each panel shall have a two-column circuit index card set under glass or glass equivalent on the inside of the door. Each circuit shall be identified as to use and room or area. Areas shall be designated by room numbers. Room numbers shown on the drawings may change and contractor shall verify final room numbers with the architect prior to project completion.
- 2.6 Tandem mounted or wafer type breakers are not acceptable.
- 2.7 Multi-pole breakers shall have one common trip handle or be internally connected. Handle ties are not acceptable.
- 2.8 Circuit breakers for a multi-wire branch circuit shall be tied together with a factory breaker handle tie.
- 2.9 Breaker arrangements shown in the drawings shall be maintained. The circuit breakers in panels must match the orientations indicated on the drawings. In other words, if a 30 amp breaker is shown on the drawing in Space #2, this must be the location it appears on the submittal schedule. Standard factory arrangements will not be accepted.
- 2.10 Where conductor sizes exceed the standard breaker lug wire range, or where multiple conductors per phase are required, the panelboard manufacturer shall provide the breaker with suitable lugs for terminating the specified conductors.
- 2.11 Acceptable manufacturers are Square D, Eaton, Siemens or General Electric.
- 2.12 Equipment manufactured by any other manufacturers not specifically listed in Section 2.10 are not considered equal, or approved for use on this project.

Surge Protective Device (SPD)

- 2.13 Surge Protective Device (SPD) panelboards, shall be provided with an integrated circuit breaker panelboard and parallel connected suppression / filter system in a single enclosure. The SPD panelboard shall meet the following parameters: IEEE C62.41.1, IEEE C62.41.2, IEEE C62.45, UL 1283 and the UL 1449, Third Edition, effective September 29, 2009.
- 2.14 The panelboard shall be UL 67 Listed and the SPD shall be UL 1449 labeled as Type 1 or Type 2 or as Type 4 intended for Type 1 or Type 2 applications. SPD shall be factory installed integral to the panel board.
- 2.15 The SPD panelboard shall be top or bottom feed according to requirements. A circuit directory shall be located inside the door.
- 2.16 SPD shall meet or exceed the following criteria:
 - 2.16.1 For standard areas supply SPD having 100kA per phase surge current capacity. For mountain and desert areas (areas with over 5 lightning strikes per year), SPD shall have a per phase surge current capacity of 200kA.

Lakeside Union School District

2.16.2 UL 1449 – Third Edition Revision; effective September 29, 2009, Voltage Protection Ratings shall not exceed the following:

<u>VOLTAGE</u>	L-N	L-G	N-G	<u>L-L</u>	MCOV
208Y/120	700V	700V	700V	1200V	150V
480Y/277	1200V	1200V	1200V	2000V	320V

- 2.16.3 SPD shall be UL labeled with 100kA Short Circuit Current Rating (SCCR).
- 2.17 UL 1449 Third Edition Revision; effective September 29, 2009, Voltage Protection Ratings shall not exceed the following:

VOLTAGE	L-N	L-G	N-G	L-L	MCOV
208Y/120	700V	700V	700V	1200V	150V
480Y/277	1200V	1200V	1200V	2000V	320V

- 2.18 SPD shall be UL labeled with a minimum 100kVA short circuit rated (SCCR).
- 2.19 UL 1449 Listed Maximum Continuous Operating Voltage (MCOV) (verifiable at UL.com):

System Voltage	Allowable System Voltage Fluctuation (%)	<u>MCOV</u>
208Y/120	25%	150V
480Y/277	15%	320V

- 2.20 SPD shall incorporate a UL 1283 listed EMI/RFI filter with minimum attenuation of 50dB at 100 kHz. No filtering is required for a 100kA SPD.
- 2.21 Suppression components shall be heavy duty 'large block' MOVs, each exceeding 30mm diameter.
- 2.22 Type 4 SPD shall include a serviceable, replaceable module.
- 2.23 SPD shall be equipped with the following diagnostics:
 - 2.23.1 Visual LED diagnostics including a minimum of one green LED indicator per phase, and one red service LED.
 - 2.23.2 No other test equipment shall be required for SPD monitoring or testing before or after installation.
- 2.24 SPD shall have a response time no greater than 1/2 nanosecond
- 2.25 SPD shall have a 10 year warranty
- 2.26 The SPD panelboard shall have removable interior
- 2.27 The SPD panelboard main bus shall be aluminum and rated for the load current required
- 2.28 The SPD panelboard shall include a 200% rated neutral assembly with copper neutral bus
- 2.29 The unit shall be provided with a safety ground bus

Lakeside Union School District

(SPD) Quality Assurance

- 2.30 Manufacturer Qualifications: Engage a firm with at least 5 years experience in manufacturing transient voltage surge suppressors.
- 2.31 Manufacturer shall be ISO 9001 or 9002 certified.
- 2.32 The manufacturer of this equipment shall have produced similar electrical equipment for a minimum period of ten (10) years. When requested by the Engineer, an acceptable list of installations with similar equipment shall be provided demonstrating compliance with this requirement.
- 2.33 The SPD shall be compliant with the Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC.

PART 3 EXECUTION

- 3.1 Painting of panelboard covers in finished areas shall be done by the general contractor.
- 3.2 Provide a spare 3/4" conduit stubbed to an accessible area for each of every three (3) spares or spaces provided in recessed panel boards.
- 3.3 All lugs shall be torque tested in the presence of the inspector of record.

Short Circuit & Coordination Study

- 3.4 The contractor shall provide the following studies; a time current and complete short-circuit study, equipment-interrupting or withstand evaluation, and a protective-device coordination study as described below for the distribution system. The equipment study shall be included with the equipment submittals. The studies shall include all portions of the electrical distribution system from the normal and alternate sources of power throughout the low-voltage distribution system. Normal system operating method, alternate operation, and operations which could result in maximum-fault conditions shall be thoroughly covered in the study. The studies are to be reviewed by a Professional Engineer registered in the State of California.
 - 3.4.1 All studies shall be performed by "Emerson Electric" (858) 695-9551, MTA (858) 472-0193, or Terra Power Solutions (858) 380-8170. Studies performed by manufactures or other engineering or testing companies must submit qualifications for approval by Johnson Consulting Engineers, 7 days prior to bid for this project.
- 3.5 Short-Circuit Study
 - 3.5.1 The study shall be in accordance with applicable ANSI and IEEE standards.
 - 3.5.2 The study input data shall include the short-circuit single- and three-phase contributions from all sources, with the X/R ratio, the resistance and reactance components of each branch impedance, motor and generator contributions, base quantities selected, and all other applicable circuit parameters.
 - 3.5.3 Short-circuit momentary duties and interrupting duties shall be calculated on the basis of maximum available fault current at each switchgear bus, switchboard, motor control center, distribution panelboard, pertinent branch circuit panelboards, and other significant locations through the system.

Lakeside Union School District

- 3.5.4 For the portions of a system utilizing medium- and high-voltage breakers, separate calculations shall be made for one-half cycle (close and latch) currents and interrupting currents. Calculations shall be for three-phase and phase-to-ground faults at each bus under consideration.
- 3.5.5 For the portions of a system utilizing low-voltage breakers (less than 1,000 volts), calculations shall be made for three-phase and phase-to-ground interrupting currents at each bus under consideration.

3.6 Equipment Evaluation Study

3.6.1 An equipment evaluation study shall be performed to assure the adequacy of circuit breakers, controllers, surge arresters, busways, switches, and fuses by tabulating and comparing the short-circuit ratings of these devices with the maximum short-circuit momentary and interrupting duties. Series rating of over current protective devices shall be permitted to reduce the maximum available short circuit current to panelboard branch circuit breakers to no more than 10,000 amps symmetrical for the 120/208 volt system and 14,000 amps symmetrical for the 277/480 volt system.

3.7 Protective-Device Coordination Study

- 3.7.1 A protective-device coordination study shall be performed to select or to verify the selection of power fuse ratings, protective-relay characteristics and settings, ratios, and characteristics of associated voltage and current transformers, and low-voltage breaker trip characteristics and settings. Time current curves are to be colored to clearly indicate coordination.
- 3.7.2 The coordination study shall include all voltage classes of equipment from the source's incoming line protective device down to and including each motor control center and/or panelboard. The phase and ground over current protection shall be included as well as settings for all other adjustable protective devices. Ground fault settings are to, as a minimum coordinate with a downstream 50 amp branch circuit breaker.
- 3.7.3 Protective device selection and settings shall be in accordance with requirements of the National Electrical Code and the recommendations of the ANSI/IEEE Standard 399, as applicable.

3.8 Study Report

- 3.8.1 The results of the power-system studies shall be summarized in a final report. The report shall include the following sections:
 - 3.8.1.1 Description, purpose, basis, and scope of the study and a single-line diagram of the portion of the power system which is included within the scope of study.
 - 3.8.1.2 Tabulations of circuit breaker, fuse, and other equipment ratings versus calculated short-circuit duties and commentary regarding same.
 - 3.8.1.3 Protective device coordination curves, with commentary.

Lakeside Union School District

- 3.8.1.4 The selection and settings of the protective devices shall be provided separately in a tabulated form listing circuit identification, IEEE device number, current transformer ratios, manufacturer, type, range of adjustment, and recommended settings. A tabulation of the recommended power fuse selection shall be provided for all fuses in the system.
- 3.8.1.5 Fault-current tabulations including a definition of terms and a guide for interpretation.
- 3.8.1.6 The report must be submitted with the material submittal for the engineer's approval.

3.9 Implementation

- 3.9.1 The equipment manufacturer is to be responsible for providing over current devices which are in compliance with the results of the above study.
- 3.10 A warning label, as specified in the above standard, shall be placed on each switchboard, panelboard, and safety switch indicating the incident energy levels on the equipment to warn qualified personnel in accordance with NFPA 70E, section 110.16. Labels shall be laminated white micarta with black lettering on each. Letters shall be no less than 3/8" high.
- 3.11 The incident level calculations for each piece of equipment shall be given to the owner and maintained on file by the maintenance department.
- 3.12 The design goal is to minimize the incident energy to which a maintenance employee may be exposed.

Lakeside Union School District

SECTION 262726

SWITCHES AND RECEPTACLES

PART 1 GENERAL

- 1.1 Furnish and install all wiring devices as shown on drawings and as herein specified. Unless otherwise noted, device and plate numbers shown are Hubbell and shall be considered the minimum standard acceptable. Other acceptable manufacturers are Pass and Seymour, Leviton, General Electric and Bryant.
- 1.2 Submit manufacturers' data on all items.

1.3 Common submittal mistakes which will result in the submittals being rejected:

- 1.3.1 Not correctly indicating ampacity rating of proposed devices.
- 1.3.2 Not including all items listed in the above itemized description.
- 1.3.3 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining or clouding the items to be reviewed, or crossing out the items which are not applicable.
- 1.3.4 Not including actual manufacturer's catalog information of proposed products.
- 1.3.5 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements or "to be determined later" statements. The products being submitted must be the products installed.

PART 2 PRODUCTS

2.1 All switches shall be of the quiet mechanical type, Specification Grade, 20 amp, 120/277 volt AC as follows:

	HUBBELL	LEVITON	PASS & SEYMOUR
Single Pole	CS120	CS1202	CS20AC1
Two Pole	CS1222	CS2202	CSB20AC2
Three-way	CS320	CS3202	CS20AC3
Key Switch	HBL1221L	1221-2L	PS20AC1-L

- 2.2 All switches shall have the "on" and the "off" position indicated on the handle. If switches of higher ampere ratings are required, they shall be of similar type and quality as those shown above. Groups of switches shown at one location shall be installed under a single plate up to a maximum of six where more than six switches are shown coordinate arrangement with the Architect.
- 2.3 Dimmer switches for incandescent lamp loads shall be square-law type, slide control dimmer with OFF position, Lutron or Hubbell "Nova-T" Series NT-600 (0-500 watt load), NT-1000 (501-900 watt load), NT-1500 (901-1500 watt load), or equal (no known equal).
- 2.4 All convenience receptacles and special outlets throughout shall be grounding type. Convenience receptacles shall be side wired, parallel slot, two pole, three wire, 20 amp as follows:

Lakeside Union School District

	<u>HUBBELL</u>	<u>LEVITON</u>	PASS & SEYMOUR
Duplex	5352	5362	PS5362
GFCI	GFR5362	7899	2097
Isolated Ground	IG5362	5362IG	IG6300
Tamper Proof		8300SG	TR63H
USB		T5832	min. 3.6 amp charging
			capability
Controlled Type	BR20C2GN	5362-S2N	5362CDGN

- 2.5 All safety or tamper proof receptacles shall have no exposed external current carrying metal parts, and shall have integral wiring leads suitable for two or three wire installations. All Controlled Receptacles shall be solid color 'Green' marked "Controlled" and with Universal Power Symbol.
- 2.6 Special receptacles shall be as noted on the drawings.
- 2.7 Weatherproof plates shall be designed to meet CEC Article 410-57, wet location listed with cover "open." Where weatherproof receptacles have been identified to be provided with locking covers, the cover shall be as manufactured by Pass & Seymour #4600-8 or Cole Lighting 310 Series. Rough-in requirements vary between manufacturers. Contractor to field verify requirements prior to installation.
- 2.8 All plates throughout shall be stainless steel. Where wiring devices are installed in concrete block walls, provide oversized 3-1/2" x 5" coverplates.
- 2.9 All devices shall be white unless otherwise noted or a special purpose outlet.
- 2.10 Unless where specifically detailed on the drawings, floor boxes shall be PVC suitable for concrete poured floors of minimum 3-1/2" depth, with a modular design to gang two or three sections together.
 - 2.10.1 Carlon #E976 series or approved equal
 - 2.10.2 Provide brass cover with brass carpet flange unless otherwise detailed.

PART 3 EXECUTION

- 3.1 All receptacles and line voltage switches shall be labeled on faceplate utilizing white Dymo-Tape with black lettering. Labeling format shall be 'XX-YY'. XX represents panel name and YY represents circuit number. Labels shall be placed below the top faceplate fastener and above the top edge of faceplate opening. In no circumstance shall they overlap the fastener or the receptacle.
- 3.2 Switches for room lighting shall be located no more than 12" center line from door jamb at plus 48" center line above finished floor or +46" to top of devices where located over casework, reference CBC Figure 11B-5D.
- 3.3 All receptacles shall be mounted at plus 18" to center line above finished floor unless noted or shown otherwise. All receptacles shall be installed with the ground pin up, at the top of the receptacle to comply with IEEE 602-1986.
- 3.4 Furnish and install wall plates for all wiring devices, and outlet boxes, including special outlets, sound, communication, signal, and telephone outlets, etc. as required. All cover plates shall be appropriate for type of device.

Lakeside Union School District

Lakeside Union School District

SECTION 262816

DISCONNECTS

PART 1 GENERAL

- 1.1 Furnish and install all disconnect switches as shown on the drawings and as required by the CEC.
- 1.2 Submit manufacturers' data for all disconnects and fuses.
 - 1.2.1 Disconnects
 - 1.2.2 Fuses

1.3 Common submittal mistakes which will result in the submittals being rejected:

- 1.3.1 Not including all items listed in the above itemized description.
- 1.3.2 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining or clouding the items to be reviewed, or crossing out the items which are not applicable.
- 1.3.3 Not including actual manufacturer's catalog information of proposed products.
- 1.3.4 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements, or "to be determined later" statements. The products being submitted must be the products installed.

PART 2 PRODUCTS

- 2.1 Acceptable manufacturers shall be Square D, Cutler Hammer, Siemens or General Electric.
- 2.2 Equipment manufactured by any other manufacturers not specifically listed in Section 2.1 are not considered equal, or approved for use on this project.
- 2.3 All switches shall be heavy-duty type, externally operated, quick-make, quick-break, rated 600 volts or 240 volts as required, with the number of poles and ampacity as noted. All switches for motors shall be HP rated. Switches shall have NEMA-Type 1 enclosures, except switches located where exposed to outdoor conditions shall have NEMA Type 3R enclosure. Switches generally shall be fused except where noted to be non-fused on the drawings.
- 2.4 Where fuses are indicated, fuses shall be Bussman or Littlefuse (no known equal). Fuses shall be current limiting type with time delay characteristics to suit the equipment served.

PART 3 EXECUTION

- 3.1 Mount all switches to structure or U-channel support. U-channel supports shall be cleaned and painted to prevent rust.
- 3.2 Switches shall be accessible with proper clearances in front per CEC 110-16.
- 3.3 All lugs shall be torque tested in the presence of the inspector of record.

Lakeside Union School District

3.4 Arc Flash and Shock Hazard

- 3.4.1 The contractor is to provide, and submit to the engineer for approval, incident energy level calculations as determined using the methodologies described in NFPA 70E or IEEE standard 1584-2002.
- 3.4.2 A warning label, as specified in the above standard, shall be placed on each switchboard, panelboard, and safety switch indicating the incident energy levels on the equipment to warn qualified personnel in accordance with NFPA 70E, section 110.16 Labels shall be laminated white micarta with black lettering on each. Letters shall be no less than 3/8" high.
- 3.4.3 The incident level calculations for each piece of equipment shall be given to the owner and maintained on file by the maintenance department.
- 3.4.4 The design goal is to minimize the incident energy to which a maintenance employee may be exposed and in no case more than 8 cal./cm².

Lakeside Union School District

SECTION 265114

LED LIGHTING FIXTURES AND LAMPS

PART 1 GENERAL

- 1.1 Furnish and install all lighting fixtures with lamps as specified and as shown on the drawings. Fixtures shall be complete including canopies, hanger, diffusers, ballasts, etc.
- 1.2 Submit manufacturer's data for each fixture type including the following:
 - 1.2.1 Lighting fixture catalog data and photometry.
 - 1.2.2 Lamp catalog data for each fixture type.
 - 1.2.3 Driver catalog data for each fixture type.
 - 1.2.4 Fixture warranty.

1.3 Common submittal mistakes which will result in the submittal being rejected:

- 1.3.1 Not including lamp and driver information for each fixture type.
- 1.3.2 Not including all items listed in the above itemized description.
- 1.3.3 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining or clouding the items to be reviewed, or crossing out the items which are not applicable.
- 1.3.4 Not including actual manufacturer's catalog information of proposed products.
- 1.3.5 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements, or "to be determined later" statements. The products being submitted must be the products installed.

PRODUCT SUBSTITUTION

- 1.4 All substitutions or alternate fixtures to those indicated on the project fixture schedule shall be submitted for approval (7) business days prior to the project bid date. Approvals when accepted will be issued in the form of an addendum. No consideration for substitutions will be provided after the award of the contract.
 - 1.4.1 The substitution request must include a statement indicating the difference in price of both the specified and alternate product, both contractor and list price. The substitution request must include a comparison of the total fixture wattage, total fixture lumens, fixture efficiency and warranty comparison.
 - 1.4.2 When proposing to substitute lighting fixture and/or fixture retrofit, a point by point photometric calculation of a typical application as used in this project shall be included. A calculation of the specified and the proposed alternate shall be included.

PART 2 PRODUCTS

2.1 All catalog numbers are given for manufacturer's identification and shall not relieve Contractor from responsibility of full conformance to all applicable written description requirements governing material and fabrication, either in the general or specific sections. Where catalog numbers are indicated as modified, no modification will be required if the

Lakeside Union School District

- standard unit fully conforms to descriptive requirements in the Specifications and matches specified ceiling.
- 2.2 All fixtures of the same type shall be of one manufacturer and of identical finish and appearance. All fixtures and component parts shall bear the UL label.
- 2.3 All steel parts shall be phosphate treated in multistage power spray system for corrosion resistance and paint adhesion. Final finish shall be electrostatically applied baked white enamel of not less than 87 pct. reflectance on reflecting surfaces.
- 2.4 Each fixture shall have a continuous light-seal gasket seated in such manner as to prevent any light leak through any portion or around any edge of the trim frame.
- 2.5 Diffusers shall be framed in a hinged, continuous assembly. Diffuser frame latches shall be spring-loaded or cam-operated.
- 2.6 All recessed fixtures shall be provided with frames appropriate for the type of ceiling involved. No fixtures shall be ordered until the ceiling construction has been verified by the Contractor.

MINIMUM LUMINARY REQUIREMENTS

- 2.7 Electrical Components, Devices and Accessories: Listed and labeled as defined in CEC by a qualified testing agency, and marked for intended location and application.
- 2.8 Recessed Fixtures: Comply with NEMA LE 4.
- 2.9 CRI of minimum 80 CCT of 4100 K.
- 2.10 Rated lamp life of 50,000 hours minimum.
- 2.11 Lamps dimmable from 100 percent to 0 percent of maximum light output.
- 2.12 Nominal Operating Voltage: 120 V / 277 V ac

PART 3 EXECUTION

- 3.1 All lighting fixtures shall be supported as follows:
 - 3.1.1 From the outlet box by means of a metal strap where its weight is less than five pounds.
 - 3.1.2 From its outlet box by means of a hickey or other threaded connection where its weight is from five to fifty pounds.
 - 3.1.3 Directly from the structural slab or joists where its weight exceeds fifty pounds.
 - 3.1.4 Lighting fixtures shall be supported independent of the ceiling system or additional ceiling support must be added to carry the weight of the lighting fixtures. Recessed lighting fixtures supported from ceiling grid tees shall be furnished with hold down clips in conformance with CEC 410 16, spring clips will not be permitted. All fixtures which the manufacturer has not provided UL approved clips, must be attached to the fixture and ceiling grid by metal screws.

Lakeside Union School District

- 3.2 Furnish and install supplementary blocking and support as required to support fixture from structural members. Contractor shall submit proposed blocking method for all suspended lighting fixtures for approval prior to rough in.
- 3.3 Suspended and/or pendant mounted fixtures shall be provided with four aircraft safety cables extending in opposite directions, attached to the fixture, and supported from a structural member. The contractor shall submit proposed fixture mounting and aircraft cable attachment methods for approval prior to fixture rough in.
- 3.4 Class 1 wiring to the fixture must be installed either conduit or type MC-PCS cabling no open wiring shall be permitted.
- 3.5 Chain suspension may be used only where specifically permitted on the drawings. Chain shall be heavy duty, nickel or cadmium plated, suitable for weight of specific fixture.
- 3.6 Shop drawings shall be furnished for each fixture type. Catalog cuts, illustrating conformance with specifications, will be acceptable for standard units. Shop drawings shall indicate materials, assembly, finish and dimensions.
- 3.7 Photometric data shall be furnished for any fixture substituted for those listed on the schedule.
- 3.8 Any driver which produces a greater than normal amount of noise shall be replaced by the contractor. Normal will be determined by the level of sound produced by other similar fixtures operating in the area.

Lakeside Union School District

SECTION 269090

ELECTRICAL CLOSEOUT

PART 1 GENERAL

- 1.1 Upon completion of the electrical work, the entire installation shall be tested by the Contractor, and demonstrated to be operating satisfactorily to the Architect, Engineer, Inspector and Owner.
- 1.2 All testing and corrections shall be made prior to demonstration of operation to the Architect, Engineer, Inspector and Owner.
- 1.3 In addition to the demonstration of operation, the Contractor is also required to review the content and quality of instructions provided on items demonstrated with the Architect, Engineer, Inspector and Owner.

PART 2 EXECUTION

- 2.1 Wiring shall be tested for continuity, short circuits and/or accidental grounds. All systems shall be entirely free from "grounds," "short circuits," and any or all defects.
- 2.2 Motors shall be operating in proper rotations, and control devices functioning properly. Check all motor controllers to determine that properly sized overload devices are installed, and all other electrical equipment for proper operation.
- 2.3 Tests and adjustments shall be made prior to acceptance of the electrical installation by the Architect, and a certificate of inspection and acceptance of the electrical installation by local inspection authorities shall be provided.
- 2.4 All equipment or wiring provided which tests prove to be defective or operating improperly shall be corrected or replaced promptly, at no additional cost to the Owner.
- 2.5 Test all motor and feeder circuits with a "megger" tester to determine that insulation values conform to Section 110-20, California Electrical Code (CEC). Test reports must be submitted and approved by the engineer before final acceptance.
- 2.6 Test all grounding electrode connections to assure a resistance of no more than 10 ohms is achieved. Augment grounding until the ohmic value stated above is achieved. Provide certified test results to the Architect, Engineer and Inspector.

Lakeside Union School District

SECTION 31 2316.13 TRENCHING

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Backfilling and compacting for utilities outside the building related to the sewer system and grease interceptor.

1.02 REFERENCES

- A. AASHTO T 180 Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop 2022, with Errata .
- B. ASTM D698 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)) 2012 (Reapproved 2021).
- C. ASTM D1556/D1556M Standard Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method 2015, with Editorial Revision (2016).
- D. ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)) 2012 (Reapproved 2021).
- E. ASTM D2167 Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method 2015.
- F. ASTM D 3017 Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth); 2005.

1.03 DEFINITIONS

- A. Finish Grade Elevations: Indicated on drawings.
- B. Subgrade Elevations: 30 inches below finish grade elevations indicated on drawings to the top of the utility, unless otherwise indicated.

1.04 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- Fill Composition Test Reports: Results of laboratory tests on proposed and actual materials used.
- C. Compaction Density Test Reports.

1.05 DELIVERY, STORAGE, AND HANDLING

- A. When necessary, store materials on site in advance of need.
- B. When fill materials need to be stored on site, locate stockpiles where designated.
 - Separate differing materials with dividers or stockpile separately to prevent intermixing.
 - 2. Prevent contamination.
 - 3. Protect stockpiles from erosion and deterioration of materials.
- Verify that survey bench marks and intended elevations for the Work are as indicated.
- D. Protect plants, lawns, and other features to remain.
- E. Protect bench marks, survey control points, existing structures, fences, sidewalks, paving, and curbs from excavating equipment and vehicular traffic.

PART 2 PRODUCTS

2.01 FILL MATERIALS

- A. General Fill: Conforming to State of California Public Works Department standard.
- B. Granular Fill: Coarse aggregate, conforming to State of California Public Works Department standard.
- C. Sand: Conforming to State of California Public Works Department _____ standard.

Lakeside Union School District

2.02 PLASTIC WARNING TAPE

- A. Acid and alkali-resistant polyethylene film specifically manufactured for marking and identifying underground utilities.
 - 1. Minimum width, 6 inches; minimum thickness, 4 mils.
 - 2. Metallic core encased in protective jacket resistant to corrosion and detectable by metal detector when tape is buried 3-feet deep.
- B. Continuous printed inscription shall describe utility. Tape color:
 - 1. Electric: Red.
 - 2. Gas: Yellow.
 - 3. Telephone: Orange.
 - 4. CATV: Orange.
 - 5. Water System: Blue.
 - 6. Sewer: Green.

2.03 SOURCE QUALITY CONTROL

- See Section 01 4000 Quality Requirements, for general requirements for testing and analysis of soil material.
- B. Where fill materials are specified by reference to a specific standard, test and analyze samples for compliance before delivery to site.
- C. If tests indicate materials do not meet specified requirements, change material and retest.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that survey bench marks and intended elevations for the work are as indicated.

3.02 PREPARATION

- A. Identify required lines, levels, contours, and datum locations.
- B. Locate, identify, and protect utilities that remain and protect from damage.
- C. Grade top perimeter of trenching area to prevent surface water from draining into trench.

 Provide temporary means and methods, as required, to maintain surface water diversion until no longer needed, or as directed by the Architect.

3.03 TRENCHING

- A. Notify Architect of unexpected subsurface conditions and discontinue affected Work in area until notified to resume work.
- B. Slope banks of excavations deeper than 4 feet to angle of repose or less until shored.
- C. Do not interfere with 45 degree bearing splay of foundations.
- D. Cut trenches wide enough to allow inspection of installed utilities.
- E. Hand trim excavations. Remove loose matter.
- F. Remove large stones and other hard matter that could damage piping or impede consistent backfilling or compaction.
- G. Remove excavated material that is unsuitable for re-use from site.
- H. Stockpile excavated material to be re-used in area designated on site.
- Remove excess excavated material from site.
- J. Provide temporary means and methods, as required, to remove all water from trenching until directed by the Architect. Remove and replace soils deemed unsuitable by classification and which are excessively moist due to lack of dewatering or surface water control.
- K. Determine the prevailing groundwater level prior to trenching. If the proposed trench extends less than 1 foot into the prevailing groundwater, control groundwater intrusion with perimeter drains routed to sump pumps, or as directed by the Architect.

Lakeside Union School District

3.04 PREPARATION FOR UTILITY PLACEMENT

- A. Cut out soft areas of subgrade not capable of compaction in place. Backfill with general fill.
- B. Compact subgrade to density equal to or greater than requirements for subsequent fill material.
- C. Until ready to backfill, maintain excavations and prevent loose soil from falling into excavation.

3.05 BACKFILLING

- Backfill and compact in 12" maximum lifts to contours and elevations indicated using specified materials.
- B. Fill up to subgrade elevations unless otherwise indicated.
- C. Employ a placement method that does not disturb or damage other work.
- D. Systematically fill to allow maximum time for natural settlement. Do not fill over porous, wet, frozen or spongy subgrade surfaces.
- E. Maintain optimum moisture content of fill materials to attain required compaction density.
- F. Correct areas that are over-excavated.
 - 1. Thrust bearing surfaces: Fill with concrete.
 - 2. Other areas: Use general fill, flush to required elevation, compacted to minimum 90 percent of maximum dry density.
- G. Compaction Density Unless Otherwise Specified or Indicated:
 - 1. Under paving and similar construction: 95 percent of maximum dry density.
 - 2. At other locations: 90 percent of maximum dry density.

3.06 BEDDING AND FILL AT SPECIFIC LOCATIONS

- A. Utility Piping, Conduits, and Duct Bank:
 - 1. Bedding: Use Fill Type sand gravel crushed aggregate or native free draining granual material having sand equivelant of not less than 50 and expansion coefficient of not more than .5 of 1%.
 - 2. Cover with general fill.

3.07 TOLERANCES

- A. Top Surface of General Backfilling: Plus or minus 1 inch from required elevations.
- B. Top Surface of Backfilling Under Paved Areas: Plus or minus 1 inch from required elevations.

3.08 FIELD QUALITY CONTROL

- A. See Section 01 4000 Quality Requirements, for general requirements for field inspection and testing.
- B. Evaluate results in relation to compaction curve determined by testing uncompacted material in accordance with AASHTO T 180, ASTM D 1557 ("modified Proctor"), ASTM D 698 ("standard Proctor"), AASHTO T 180, ASTM D 1557 ("modified Proctor"), ASTM D 698 ("standard Proctor"), AASHTO T 180, ASTM D 1557 ("modified Proctor"), or ASTM D 698 ("standard Proctor").
- C. If tests indicate work does not meet specified requirements, remove work, replace and retest.

3.09 CLEANING

A. Remove unused stockpiled materials, leave area in a clean and neat condition. Grade stockpile area to prevent standing surface water.

Lakeside Union School District

SECTION 32 1216 ASPHALT PAVING

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Asphalt Concrete Paving.
- B. Herbicide Treatment.
- C. Pavement-marking paint.
- D. Redwood Headers.
- E. Surface sealer.

1.02 REFERENCE STANDARDS

- A. Al MS-2 Asphalt Mix Design Methods 2015.
- B. Al MS-19 Basic Asphalt Emulsion Manual 2008.
- C. Standard Specifications for Public Works Construction ("Greenbook") 1997 Edition.
- D. Standard Specifications, State of California, Department of Transportation (Caltrans).

1.03 SUBMITTALS

- A. Mix Design:
 - 1. Submit for approval each job-mix formula proposed for work of this section.
- B. Approved Mix:
 - Furnish licensed weighmaster certificates with each load of asphalt concrete delivered to
 project. Yield of asphalt concrete material shall be twenty four (24) pounds per square
 foot of paving area based on two inch thickness after rolling. A five (5) percent tolerance
 will be allowed between total calculated weight and actual weight incorporated in the work.

1.04 QUALITY ASSURANCE

- A. Perform Work in accordance with State of California Public Work's standard.
 - Provide aggregate base asphalt concrete and installation complying with Standard Specifications for Public Works Construction (PWC Specifications), current edition, and the Regional Supplement Amendments to the Standard Specifications for Public Works Construction, current edition, and as herein specified.
- B. Mixing Plant: Conform to State of California Public Work's standard.
- C. Obtain materials from same source throughout.
- D. Installer's Qualifications: Firm specializing in paving installation, with not less than 5 years of experience in installation of paving similar to that required for this project.
- E. Testing and Inspection:
 - 1. The owner will engage an independent testing and inspection agency to perform quality control procedures and to prepare test reports.

1.05 REGULATORY REQUIREMENTS

A. Conform to applicable code for paving work on public property.

1.06 FIELD CONDITIONS

- A. Do not place asphalt when ambient air or base surface temperature is less than 40 degrees F, or surface is wet or frozen.
- B. Place bitumen mixture when temperature is not more than 15 F degrees below bitumen supplier's bill of lading and not more than maximum specified temperature.

Lakeside Union School District

PART 2 PRODUCTS

2.01 MATERIALS

- A. Aggregate for Base Course- Gravel Fill Type ____: Angular crushed washed stone; free of shale, clay, friable material and debris.
- B. Aggregate for Binder Course: In accordance with State of California Public Work's standards.
- C. Aggregate for Wearing Course: In accordance with State of California Public Work's standards.
- D. Fine Aggregate: In accordance with State of California Public Work's standards.
- E. Mineral Filler: Finely ground particles of limestone, hydrated lime or other mineral dust, free of foreign matter.
- F. Seal Coat:
 - 1. Parking area, driveways, asphalt walks and ramps: Fog seal of slow breaking asphalt emulsion, grade SS-1H per PWC Specifications 203-3.
 - 2. Playground areas and adjacent access drives, walks and ramp transitions: Seal coat shall be "Plush-Tex", as manufactured by Koch Asphalt Co., or an approved equal.
- G. Herbicide: United States EPA-registered chemical herbicide suitable for application indicated.
 - 1. Manufacturer: Provide products complying with requirements of the contract documents and made by one of the following:
 - a. Ciba-Geigy Corporation.
 - b. DowElanco.
 - c. E. I. du Pont de Nemours and Company, Inc.
- H. Pavement-Marking Paint: Chlorinated rubber-alkyd paint (FS TT-P-115, Type III); factory-mixed, quick-drying, and non-bleeding.
- I. Wood Headers, Stakes, Benders and Splices: "Foundation" grade redwood as graded by Redwood Inspection Service. Minimum 2" thick lumber for headers and stakes and minimum 1" thick boards for splices. Use galvanized nails for fastening.

2.02 ASPHALT PAVING MIXES AND MIX DESIGN

- A. Base Course: 3.0 to 6 percent of asphalt cement by weight in mixture in accordance with AI MS-2.
- B. Binder Course: State of California Public Work's standards.
- C. Wearing Course: 5 to 7 percent of asphalt cement by weight in mixture in accordance with AI MS-2.
- D. Submit proposed mix design of each class of mix for review prior to beginning of work.
- E. Asphalt Concrete:
 - Top course in playground areas: PWC Specifications, Section 203-6, Class E-PG 64-10. Rolled thickness shall be 1".
 - 2. Parking areas, driveways and first course of playground areas: PWC Specifications, Section 203-6, Class C1-PG 64-10. Rolled thickness in parking areas and driveway shall be as shown on the plans. Rolled thickness of first course in playground areas shall be specified thickness as shown on plans minus the 1" top course.

2.03 SOURCE QUALITY CONTROL

A. Test mix design and samples in accordance with Al MS-2.

PART 3 EXECUTION

3.01 GENERAL

- A. Comply with cross sections, elevations, and grades indicated on the drawings.
- B. Prepare and install pavement structures in accordance with practices recommended in the "Asphalt Paving Manual"; Publication MS-8; Asphalt Institute, except to the extent that such practices are superseded by specific requirements of this section.

Lakeside Union School District

3.02 EXAMINATION

- Verify that compacted subgrade is dry and ready to support paving and imposed loads.
- B. Verify gradients and elevations of base are correct.
- C. Notify architect in writing of any unsatisfactory conditions. Do not begin paving installation until these conditions have been satisfactorily corrected.
- D. Commencement of paving work shall constitute acceptance of subbase conditions.

3.03 PREPARATION

- A. General: Immediately before placing asphalt concrete mix, remove all loose or deleterious material from surface over which pavement will be placed. Ensure that subbase is properly prepared to receive paving.
 - 1. Aggregate subbase:
 - Sweep loose granular particles from surface of aggregate course. Do not dislodge or disturb in any way the aggregate embedded in compacted surface of subbase course.
 - b. Proof roll prepared sub-base surface to check for unstable areas and areas requiring additional compaction. Repair these areas as required. Do not begin paving work until deficient sub-base areas have been corrected and are ready to receive paving.
- B. General Surface Applications to Prepared Subbase:
 - 1. Herbicide application over subbase:
 - Apply herbicide treatment over dry compacted subbase, adhering strictly to herbicide manufacturer's instructions.
 - b. Take extreme precaution to confine weed killer to only those areas to be covered by asphalt concrete and provide all necessary protection to prevent injury or damage to life and property.

3.04 INSTALLATION

- A. Techniques:
 - Placing the mix:
 - a. Spread mix at minimum temperature of 225 degrees F.
 - b. Place asphalt concrete mix on prepared surface and strike off. Place inaccessible and small areas using hand tools.
 - 1) Check mat frequently during placement, to verify correct thickness.
 - c. Before rolling operations begin, check surface using template and straightedge, and correct irregularities.
 - d. Width of paving strips:
 - Place mix in paving strips at least 10 feet wide.
 - 2) Roll first paving strip after placement. Place subsequent paving strips, extending rolling operation to overlap preceding strips.
 - e. Coursing requirements:
 - 1) Lifts:
 - (a) Base Course:
 - (1) Place plant-mixed asphalt concrete base course in single lift.
 - (2) Compact to 95 percent.
 - (3) Moisture Content: Use only the amount of moisture needed to achieve the specified compaction.

2. Joints:

- General: Construct joints to form continuous bond between adjoining portions of work. Ensure that texture and density of pavement are continuous across the joint. Surface across joint shall form smooth, uninterrupted plane and shall not pond water.
- b. Joint locations include the following:
 - 1) Between pavements laid on successive days.
 - At any point in paving where material already laid has become cold because of delay.

Lakeside Union School District

- c. Clean by brushing, or cut fresh vertical face using power saw if necessary, wherever contact surface of previously constructed pavement has become coated by dust, sand, or other objectionable material.
- Apply thin tack coat on vertical contact surface before beginning placement of new material.

3. Rolling:

- a. Start rolling operation as soon as hot mix will bear weight of roller and can be compacted without unacceptable displacement of material.
- b. Comply with roller manufacturer's recommended rolling speed, but in no case exceed 3 miles per hour.
- c. Avoid sharp turns and abrupt starts and stops.
- d. Compact mixture in areas inaccessible to rollers using hot hand tampers or vibrating plate compactors.
- e. Breakdown rolling:
 - If grade is not absolutely level, begin breakdown rolling on low side of spread. Progress toward high side.
 - Execute initial breakdown pass with drive wheel forward toward the direction of paving.
 - 3) Examine surface immediately after breakdown rolling. Repair as necessary by loosening material in defective areas and filling with hot material.
- f. Second (intermediate) rolling:
 - Execute second rolling as soon as possible after breakdown rolling, while
 mixture is still hot enough to achieve maximum density.
 - 2) Continue repeating the pattern until mixture has been compacted thoroughly.
- g. Finish rolling:
 - Execute finish rolling while mixture is sufficiently warm to allow removal of roller marks.
 - 2) Continue rolling operation until maximum density is achieved and roller marks are entirely eradicated.

4. Seal Coat:

- a. Parking Areas, Driveways, Walkways and Ramps: Dilute the asphalt emulsion with water at the rate of 1 part emulsion to 1 part water and apply at a rate of 0.1 gallons (of diluted material) per square yard. Emulsion shall be applied uniformly over entire area, and extreme care must be exercised so there will be no spots with excess material which would remain tacky.
- b. Playground Areas:
 - Prior to application of Plush-Tex, the asphalt concrete pavement surface shall be clean and free of all dust, dirt, debris and foreign matter. The pavement surface can be cleaned by use of power vacuums, compressed air and/or washing with water. If washed with water, allow surface of pavement to dry prior to application.
 - 2) Minor depressions and "bird baths" shall be located and leveled prior to application of seal coat. Locate minor depressions and "bird baths" which need to be filled by flooding area with water. All depressions of more than 1/8" under a 10 foot straight edge and all damaged areas such as foot prints, animal tracks or tire tracks are to be filled.
 - (a) Depressions of 1/4" or less shall be filled with undiluted Plush-Tex and struck off with a straight edge. Care should be taken to blend the outside edge of the area leveled into the existing pavement surface so as not to create an unsightly ridge or shadow.
 - (b) Depressions greater than 1/4" in depth may be filled with a mixture of one-part Plush-Tex to one-part clean sand by volume. For depressions greater than 1/4" in depth, the leveling may have to be done in multiple applications. After the area leveled has cured dry, it shall be rolled with a mechanical roller.
 - 3) Application: (Minimum of two.)

Lakeside Union School District

- (a) Plush-Tex should be mixed thoroughly to an even consistency prior to application. Plush-Tex may be diluted up to 20 percent by volume with clean fresh water. Care should be taken to thoroughly mix the water with Plush-Tex so that the material is of an even consistency.
- (b) Apply Plush-Tex to the surface by pouring from a can or wheeled container in continuous parallel lines and spreading immediately with rubber faced squeegees or with long-handled hair brooms. Pull the squeegee or broom on an angle from the line of spread so as to continually roll the material toward the operator and not overflow or "spill" on its forward edge away from the operator. After each coat has dried, remove any ridges or shadows with scrapers.
- (c) Plush-Tex shall be applied in two or more applications. A minimum total of undiluted Plush-Tex for two applications should be 0.54 gallons per square yard. The controlling factor, however, shall not be the number of applications nor the quantity of Plush-Tex, but shall be the following specified result:
 - (1) After the final coat of Plush-Tex has been applied and allowed to dry thoroughly, its surface shall be smooth and uniform, showing no evidence of course or uneven texture.
 - (2) The completed surface shall not vary more than 1/8" from a 10-foot straight edge.
- 5. Thickness: Per Geotechnical Recommendations:
 - a. 3 inches minimum.
- 6. Patching:
 - a. Remove paved areas which are contaminated with foreign materials or which are defective in any way. Replace removed material with fresh, hot mix. Compact by rolling until maximum density and smoothness are achieved and there is no detectable variation between patch and adjacent paving.
 - b. Patch or re-pave area as required as a result of reconstruction or adjusting manholes, cleanouts, vaults, grates, etc. to proper grade.
- 7. Restriction of traffic:
 - a. Upon completion of rolling operations, do not permit vehicular traffic on pavement until it has cooled and hardened sufficiently.
 - b. Erect clearly-visible barricades and take other measures as required to protect pavement.
- 8. Wood Headers:
 - a. Install along all edges of asphalt concrete paving except where concrete paving, walks and curbs occur. Set top edge of header to conform to grade of asphalt paving. Benders of lesser thickness may be used to form returns.
 - b. Space stakes not exceed 4' on centers, unless otherwise noted. Drive stakes to a depth of 1" below the top of the header and nail to headers.
 - c. Splice joints between individual header boards with a 1" thick board same height as header and not less than 24" long.
- 9. Interface with Other Products:
- 10. Pavement marking:
 - a. Do not begin application of pavement-marking paint until architect has approved marking placement.
 - 1) Verify proper placement of each color of marking paint.
 - b. Sweep and clean pavement surface thoroughly, immediately before application of marking paint. Pavement shall be dry and in proper condition to receive paint.
 - c. Use mechanical paint applicator to create pavement marks with consistently even edges. Apply 2 coats at paint manufacturer's recommended spreading rates.
 - d. Layout play courts to exact requirements of owner. Verify layout line widths and color prior to painting.

Lakeside Union School District

3.05 FIELD QUALITY CONTROL

- See Section 01 4000 Quality Requirements, for general requirements for quality control.
- B. General: Test in-place asphalt concrete courses for compliance with requirements for thickness, surface smoothness and density. Repair or remove and replace unacceptable paving as directed by Architect.
- C. Thickness: In-place compacted thickness will not be acceptable if exceeding following allowable variation from required thickness.
 - 1. Base Course: Specified thickness minus 1/2".
 - 2. Surface Course: Specified thickness plus or minus 1/4".
- D. Surface Smoothness: Test unfinished surface of each asphalt concrete course for smoothness, using 10' straight edge applied parallel with, and at right angles to centerline of paved area. Surface will not be acceptable if exceeding the following tolerances for smoothness.
 - 1. Base Course Surface: 1/4".
 - 2. Wearing Course Surface: 1/8".
- E. Flood Test: Prior to application of seal coats, perform a flood test in the presence of the Owner's representative.
 - Method:
 - Flood the entire asphalt concrete paved areas with water by use of a tank truck or hoses.
 - If a depression occurs, where water ponds to a depth of more than 1/8", fill or otherwise correct to provide proper drainage.
 - Feather and smooth the edges of fill so that the joint between fill and original surface is invisible.

F. Densities:

- Density of the asphalt concrete after rolling shall be 95 percent of the density obtained with the California Kneading Compactor per California Test 304.
 - Density of the aggregate base course shall be 95 percent of maximum relative density.

3.06 PROTECTION

A. Immediately after placement, protect pavement from mechanical injury for 7 days or until surface temperature is less than 140 degrees F.

Lakeside Union School District

SECTION 33 3113 SITE SANITARY SEWERAGE GRAVITY PIPING

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Sanitary sewerage drainage piping, fittings, and accessories.

1.02 RELATED REQUIREMENTS

A. Section 31 2316.13 - Trenching: Excavating, bedding, and backfilling.

1.03 DEFINITIONS

 Bedding: Fill placed under, beside and directly over pipe, prior to subsequent backfill operations.

1.04 REFERENCE STANDARDS

- ASTM D2321 Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications 2020.
- B. ASTM D3034 Standard Specification for Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings 2021.

1.05 SUBMITTALS

- A. See Section 01 3010 Submittals for submittal procedures.
- B. Product Data: Provide data indicating pipe, pipe accessories, and _____.
- C. Project Record Documents:
 - 1. Record location of pipe runs, connections, manholes, cleanouts, and invert elevations.
 - Identify and describe unexpected variations to subsoil conditions or discovery of uncharted utilities.

PART 2 PRODUCTS

2.01 SEWER PIPE MATERIALS

- A. Provide products that comply with applicable code(s).
- B. Plastic Pipe: ASTM D3034, Type PSM, Poly(Vinyl Chloride) (PVC) material; inside nominal diameter of 6 inches, bell and spigot style solvent sealed joint end.
- C. Fittings: Same material as pipe molded or formed to suit pipe size and end design, in required tee, bends, elbows, cleanouts, reducers, traps and other configurations required.

2.02 CLEANOUT MANHOLE

- A. Lid and Frame: Cast iron construction, hinged lid.
- B. Shaft Construction and Concentric Cone Top Section: Reinforced precast Concrete pipe sections, lipped male/female dry joints, cast steel ladder rungs into shaft sections at 12 inches; nominal shaft diameter of 36 inches.

2.03 BEDDING AND COVER MATERIALS

- A. Pipe Bedding Material: As specified in Section 31 2316.13.
- B. Pipe Cover Material: As specified in Section 31 2316.13.

PART 3 EXECUTION

3.01 GENERAL

A. Perform work in accordance with applicable code(s).

3.02 TRENCHING

- A. See Section 31 2316.13 for additional requirements.
- B. Backfill around sides and to top of pipe with cover fill, tamp in place and compact, then complete backfilling.

Lakeside Union School District

3.03 INSTALLATION - PIPE

- A. Install pipe, fittings, and accessories in accordance with manufacturer's instructions. Seal watertight.
 - 1. Plastic Pipe: Also comply with ASTM D2321.
- B. Lay pipe to slope gradients noted on layout drawings; with maximum variation from true slope of 1/8 inch in 10 feet.
- C. Connect to building sanitary sewer outlet .

3.04 INSTALLATION - CLEANOUTS

- A. Form bottom of excavation clean and smooth to correct elevation.
- B. Establish elevations and pipe inverts for inlets and outlets as indicated.
- C. Cleanouts to be placed below grade shall be in a pre-cast concrete yard box with concrete cover labeled "SEWER".

3.05 FIELD QUALITY CONTROL

- A. Perform field inspection and testing in accordance with Section 01 4000.
- B. If tests indicate Work does not meet specified requirements, remove Work, replace and retest at no cost to Owner.
- C. Pressure Test: Gauge pressure to be minimum of 10-foot head of each joint for duration of check; Medium to be water; 4 hour test period length.

3.06 PROTECTION

A. Protect pipe and bedding cover from damage or displacement until backfilling operation is in progress.